Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Related tags

Deep LearningUDAT
Overview

Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Unsupervised Domain Adaptation for Nighttime Aerial Tracking. In CVPR, pages 1-10, 2022.

featured

Overview

UDAT is an unsupervised domain adaptation framework for visual object tracking. This repo contains its Python implementation.

Paper | NAT2021 benchmark

Testing UDAT

1. Preprocessing

Before training, we need to preprocess the unlabelled training data to generate training pairs.

  1. Download the proposed NAT2021-train set

  2. Customize the directory of the train set in lowlight_enhancement.py and enhance the nighttime sequences

    cd preprocessing/
    python lowlight_enhancement.py # enhanced sequences will be saved at '/YOUR/PATH/NAT2021/train/data_seq_enhanced/'
  3. Download the video saliency detection model here and place it at preprocessing/models/checkpoints/.

  4. Predict salient objects and obtain candidate boxes

    python inference.py # candidate boxes will be saved at 'coarse_boxes/' as .npy
  5. Generate pseudo annotations from candidate boxes using dynamic programming

    python gen_seq_bboxes.py # pseudo box sequences will be saved at 'pseudo_anno/'
  6. Generate cropped training patches and a JSON file for training

    python par_crop.py
    python gen_json.py

2. Train

Take UDAT-CAR for instance.

  1. Apart from above target domain dataset NAT2021, you need to download and prepare source domain datasets VID and GOT-10K.

  2. Download the pre-trained daytime model (SiamCAR/SiamBAN) and place it at UDAT/tools/snapshot.

  3. Start training

    cd UDAT/CAR
    export PYTHONPATH=$PWD
    python tools/train.py

3. Test

Take UDAT-CAR for instance.

  1. For quick test, you can download our trained model for UDAT-CAR (or UDAT-BAN) and place it at UDAT/CAR/experiments/udatcar_r50_l234.

  2. Start testing

    python tools/test.py --dataset NAT

4. Eval

  1. Start evaluating
    python tools/eval.py --dataset NAT

Demo

Demo video

Reference

@Inproceedings{Ye2022CVPR,

title={{Unsupervised Domain Adaptation for Nighttime Aerial Tracking}},

author={Ye, Junjie and Fu, Changhong and Zheng, Guangze and Paudel, Danda Pani and Chen, Guang},

booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},

year={2022},

pages={1-10}

}

Acknowledgments

We sincerely thank the contribution of following repos: SiamCAR, SiamBAN, DCFNet, DCE, and USOT.

Contact

If you have any questions, please contact Junjie Ye at [email protected] or Changhong Fu at [email protected].

Owner
Intelligent Vision for Robotics in Complex Environment
Adaptive Vision for Robotics in Complex Environment
Intelligent Vision for Robotics in Complex Environment
Awesome Transformers in Medical Imaging

This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,

Fahad Shamshad 666 Jan 06, 2023
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
Deep Surface Reconstruction from Point Clouds with Visibility Information

Data, code and pretrained models for the paper Deep Surface Reconstruction from Point Clouds with Visibility Information.

Raphael Sulzer 23 Jan 04, 2023
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022
PFLD pytorch Implementation

PFLD-pytorch Implementation of PFLD A Practical Facial Landmark Detector by pytorch. 1. install requirements pip3 install -r requirements.txt 2. Datas

zhaozhichao 669 Jan 02, 2023
🗣️ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

152 Dec 31, 2022
Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Chris Donahue 98 Dec 14, 2022
Metrics to evaluate quality and efficacy of synthetic datasets.

An Open Source Project from the Data to AI Lab, at MIT Metrics for Synthetic Data Generation Projects Website: https://sdv.dev Documentation: https://

The Synthetic Data Vault Project 129 Jan 03, 2023
multimodal transformer

This repo holds the code to perform experiments with the multimodal autoregressive probabilistic model Transflower. Overview of the repo It is structu

Guillermo Valle 68 Dec 13, 2022
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023
Mask-invariant Face Recognition through Template-level Knowledge Distillation

Mask-invariant Face Recognition through Template-level Knowledge Distillation This is the official repository of "Mask-invariant Face Recognition thro

Fadi Boutros 35 Dec 06, 2022
Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.

OTA: Optimal Transport Assignment for Object Detection This project provides an implementation for our CVPR2021 paper "OTA: Optimal Transport Assignme

217 Jan 03, 2023
Complete the code of prefix-tuning in low data setting

Prefix Tuning Note: 作者在论文中提到使用真实的word去初始化prefix的操作(Initializing the prefix with activations of real words,significantly improves generation)。我在使用作者提供的

Andrew Zeng 4 Jul 11, 2022
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

Adaxry 13 Jul 25, 2022
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
hySLAM is a hybrid SLAM/SfM system designed for mapping

HySLAM Overview hySLAM is a hybrid SLAM/SfM system designed for mapping. The system is based on ORB-SLAM2 with some modifications and refactoring. Raú

Brian Hopkinson 15 Oct 10, 2022
A keras implementation of ENet (abandoned for the foreseeable future)

ENet-keras This is an implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from ENet-training (lua-t

Pavlos 115 Nov 23, 2021
deep-prae

Deep Probabilistic Accelerated Evaluation (Deep-PrAE) Our work presents an efficient rare event simulation methodology for black box autonomy using Im

Safe AI Lab 4 Apr 17, 2021
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022