Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21)

Overview

NeuralGIF

Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21)

We present Neural Generalized Implicit Functions (Neural-GIF), to animate people in clothing as a function of body pose. Neural-GIF learns directly from scans, models complex clothing and produces pose-dependent details for realistic animation. We show for four different characters the query input pose on the left (illustrated with a skeleton) and our output animation on the right.

Dataset and Pretrained models

https://nextcloud.mpi-klsb.mpg.de/index.php/s/FweAP5Js58Q9tsq

Installation

1. Install kaolin: https://github.com/NVIDIAGameWorks/kaolin

2. conda env create -f neuralgif.yml

3. conda activate neuralgif

Training NeuralGIF

 1. Edit configs/*yaml with correct path
        a. data/data_dir:
        b. data/split_file: <path to train/test split file> (see example in dataset folder)
        c. experiment/root_dir: training dir
        d. experiment/exp_name: <exp_name>
 2 . python trainer_shape.py --config=<path to config file>

Generating meshes from NeuralGIF

1. python generator.py --config=<path to config file>

Data preparation

1. SMPL pose and shape parameters:  https://github.com/bharat-b7/IPNet

2. Save the registartion data and original scan data as: 
    
    a. data_dir/scan_dir: contain original scans
    b. data_dir/beta.npy: SMPL beta parameter of subject
    c. data_dir/pose.npz: SMPL pose parameters for all frames of scan

3. Prepare training data:
    python prepare_data/scan_data.py -data_dir=<path to data directory>

Visualisation

python visualisation/render_meshes.py -mesh_path=<folder containing meshes> -out_dir=<output dir>

Citation:

@inproceedings{tiwari21neuralgif,
  title = {Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing},
  author = {Tiwari, Garvita and Sarafianos, Nikolaos and Tung, Tony and Pons-Moll, Gerard},
  booktitle = {International Conference on Computer Vision ({ICCV})},
  month = {October},
  year = {2021},
  }
Owner
Garvita Tiwari
Garvita Tiwari
PyTorch3D is FAIR's library of reusable components for deep learning with 3D data

Introduction PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch. Key features include: Data structure for

Facebook Research 6.8k Jan 01, 2023
Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided curriculum Learning Approach

Get Fooled for the Right Reason Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness throu

Sowrya Gali 1 Apr 25, 2022
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.

tflite2tensorflow Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite. 1. Supported Layers No. TFLite Layer TF

Katsuya Hyodo 214 Dec 29, 2022
A containerized REST API around OpenAI's CLIP model.

OpenAI's CLIP — REST API This is a container wrapping OpenAI's CLIP model in a RESTful interface. Running the container locally First, build the conta

Santiago Valdarrama 48 Nov 06, 2022
Sparse-dense operators implementation for Paddle

Sparse-dense operators implementation for Paddle This module implements coo, csc and csr matrix formats and their inter-ops with dense matrices. Feel

北海若 3 Dec 17, 2022
PyTorch implementation for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral)

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains a PyTorch implementation for the paper Score-Based Genera

Yang Song 757 Jan 04, 2023
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Source code for Task-Aware Variational Adversarial Active Learning

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

27 Nov 23, 2022
Official code for UnICORNN (ICML 2021)

UnICORNN (Undamped Independent Controlled Oscillatory RNN) [ICML 2021] This repository contains the implementation to reproduce the numerical experime

Konstantin Rusch 21 Dec 22, 2022
Multi-Horizon-Forecasting-for-Limit-Order-Books

Multi-Horizon-Forecasting-for-Limit-Order-Books This jupyter notebook is used to demonstrate our work, Multi-Horizon Forecasting for Limit Order Books

Zihao Zhang 116 Dec 23, 2022
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

2 Jan 05, 2022
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Alexey 20.2k Jan 09, 2023
The project page of paper: Architecture disentanglement for deep neural networks [ICCV 2021, oral]

This is the project page for the paper: Architecture Disentanglement for Deep Neural Networks, Jie Hu, Liujuan Cao, Tong Tong, Ye Qixiang, ShengChuan

Jie Hu 15 Aug 30, 2022
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Wenwen Yu 498 Dec 24, 2022
Machine Learning University: Accelerated Computer Vision Class

Machine Learning University: Accelerated Computer Vision Class This repository contains slides, notebooks, and datasets for the Machine Learning Unive

AWS Samples 1.3k Dec 28, 2022
Utility code for use with PyXLL

pyxll-utils There is no need to use this package as of PyXLL 5. All features from this package are now provided by PyXLL. If you were using this packa

PyXLL 10 Dec 18, 2021
The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible

pyrelational is a python active learning library developed by Relation Therapeutics for rapidly implementing active learning pipelines from data management, model development (and Bayesian approximat

Relation Therapeutics 95 Dec 27, 2022