End-to-End Object Detection with Fully Convolutional Network

Overview

End-to-End Object Detection with Fully Convolutional Network

GitHub

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

Experiments in the paper were conducted on the internal framework, thus we reimplement them on cvpods and report details as below.

Requirements

Get Started

  • install cvpods locally (requires cuda to compile)
python3 -m pip install 'git+https://github.com/Megvii-BaseDetection/cvpods.git'
# (add --user if you don't have permission)

# Or, to install it from a local clone:
git clone https://github.com/Megvii-BaseDetection/cvpods.git
python3 -m pip install -e cvpods

# Or,
pip install -r requirements.txt
python3 setup.py build develop
  • prepare datasets
cd /path/to/cvpods
cd datasets
ln -s /path/to/your/coco/dataset coco
  • Train & Test
git clone https://github.com/Megvii-BaseDetection/DeFCN.git
cd DeFCN/playground/detection/coco/poto.res50.fpn.coco.800size.3x_ms  # for example

# Train
pods_train --num-gpus 8

# Test
pods_test --num-gpus 8 \
    MODEL.WEIGHTS /path/to/your/save_dir/ckpt.pth # optional
    OUTPUT_DIR /path/to/your/save_dir # optional

# Multi node training
## sudo apt install net-tools ifconfig
pods_train --num-gpus 8 --num-machines N --machine-rank 0/1/.../N-1 --dist-url "tcp://MASTER_IP:port"

Results on COCO2017 val set

model assignment with NMS lr sched. mAP mAR download
FCOS one-to-many Yes 3x + ms 41.4 59.1 weight | log
FCOS baseline one-to-many Yes 3x + ms 40.9 58.4 weight | log
Anchor one-to-one No 3x + ms 37.1 60.5 weight | log
Center one-to-one No 3x + ms 35.2 61.0 weight | log
Foreground Loss one-to-one No 3x + ms 38.7 62.2 weight | log
POTO one-to-one No 3x + ms 39.2 61.7 weight | log
POTO + 3DMF one-to-one No 3x + ms 40.6 61.6 weight | log
POTO + 3DMF + Aux mixture* No 3x + ms 41.4 61.5 weight | log

* We adopt a one-to-one assignment in POTO and a one-to-many assignment in the auxiliary loss, respectively.

  • 2x + ms schedule is adopted in the paper, but we adopt 3x + ms schedule here to achieve higher performance.
  • It's normal to observe ~0.3AP noise in POTO.

Results on CrowdHuman val set

model assignment with NMS lr sched. AP50 mMR recall download
FCOS one-to-many Yes 30k iters 86.1 54.9 94.2 weight | log
ATSS one-to-many Yes 30k iters 87.2 49.7 94.0 weight | log
POTO one-to-one No 30k iters 88.5 52.2 96.3 weight | log
POTO + 3DMF one-to-one No 30k iters 88.8 51.0 96.6 weight | log
POTO + 3DMF + Aux mixture* No 30k iters 89.1 48.9 96.5 weight | log

* We adopt a one-to-one assignment in POTO and a one-to-many assignment in the auxiliary loss, respectively.

  • It's normal to observe ~0.3AP noise in POTO, and ~1.0mMR noise in all methods.

Ablations on COCO2017 val set

model assignment with NMS lr sched. mAP mAR note
POTO one-to-one No 6x + ms 40.0 61.9
POTO one-to-one No 9x + ms 40.2 62.3
POTO one-to-one No 3x + ms 39.2 61.1 replace Hungarian algorithm by argmax
POTO + 3DMF one-to-one No 3x + ms 40.9 62.0 remove GN in 3DMF
POTO + 3DMF + Aux mixture* No 3x + ms 41.5 61.5 remove GN in 3DMF

* We adopt a one-to-one assignment in POTO and a one-to-many assignment in the auxiliary loss, respectively.

  • For one-to-one assignment, more training iters lead to higher performance.
  • The argmax (also known as top-1) operation is indeed the approximate solution of bipartite matching in dense prediction methods.
  • It seems harmless to remove GN in 3DMF, which also leads to higher inference speed.

Acknowledgement

This repo is developed based on cvpods. Please check cvpods for more details and features.

License

This repo is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Citing

If you use this work in your research or wish to refer to the baseline results published here, please use the following BibTeX entries:

@article{wang2020end,
  title   =  {End-to-End Object Detection with Fully Convolutional Network},
  author  =  {Wang, Jianfeng and Song, Lin and Li, Zeming and Sun, Hongbin and Sun, Jian and Zheng, Nanning},
  journal =  {arXiv preprint arXiv:2012.03544},
  year    =  {2020}
}

Contributing to the project

Any pull requests or issues about the implementation are welcome. If you have any issue about the library (e.g. installation, environments), please refer to cvpods.

Owner
BaseDetection Team of Megvii
Underwater industrial application yolov5m6

This project wins the intelligent algorithm contest finalist award and stands out from over 2000teams in China Underwater Robot Professional Contest, entering the final of China Underwater Robot Prof

8 Nov 09, 2022
A Flexible Generative Framework for Graph-based Semi-supervised Learning (NeurIPS 2019)

G3NN This repo provides a pytorch implementation for the 4 instantiations of the flexible generative framework as described in the following paper: A

Jiaqi Ma 14 Oct 11, 2022
Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Tom-R.T.Kvalvaag 2 Dec 17, 2021
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 03, 2022
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
Hardware-accelerated DNN model inference ROS2 packages using NVIDIA Triton/TensorRT for both Jetson and x86_64 with CUDA-capable GPU

Isaac ROS DNN Inference Overview This repository provides two NVIDIA GPU-accelerated ROS2 nodes that perform deep learning inference using custom mode

NVIDIA Isaac ROS 62 Dec 14, 2022
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022
JupyterLite demo deployed to GitHub Pages 🚀

JupyterLite Demo JupyterLite deployed as a static site to GitHub Pages, for demo purposes. ✨ Try it in your browser ✨ ➡️ https://jupyterlite.github.io

JupyterLite 223 Jan 04, 2023
pytorch bert intent classification and slot filling

pytorch_bert_intent_classification_and_slot_filling 基于pytorch的中文意图识别和槽位填充 说明 基本思路就是:分类+序列标注(命名实体识别)同时训练。 使用的预训练模型:hugging face上的chinese-bert-wwm-ext 依

西西嘛呦 33 Dec 15, 2022
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Random Erasing Data Augmentation =============================================================== black white random This code has the source code for

Zhun Zhong 654 Dec 26, 2022
3D cascade RCNN for object detection on point cloud

3D Cascade RCNN This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds. We designed a 3D object detection model

Qi Cai 22 Dec 02, 2022
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022
An open source machine learning library for performing regression tasks using RVM technique.

Introduction neonrvm is an open source machine learning library for performing regression tasks using RVM technique. It is written in C programming la

Siavash Eliasi 33 May 31, 2022
The official implementation of Equalization Loss for Long-Tailed Object Recognition (CVPR 2020) based on Detectron2

Equalization Loss for Long-Tailed Object Recognition Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, Junjie Yan ⚠️ We re

Jingru Tan 197 Dec 25, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal Convolutions for Action Recognition"

R2Plus1D-PyTorch PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal

Irhum Shafkat 342 Dec 16, 2022
ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

232 Dec 25, 2022
🥇Samsung AI Challenge 2021 1등 솔루션입니다🥇

MoT - Molecular Transformer Large-scale Pretraining for Molecular Property Prediction Samsung AI Challenge for Scientific Discovery This repository is

Jungwoo Park 44 Dec 03, 2022