End-to-End Object Detection with Fully Convolutional Network

Overview

End-to-End Object Detection with Fully Convolutional Network

GitHub

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

Experiments in the paper were conducted on the internal framework, thus we reimplement them on cvpods and report details as below.

Requirements

Get Started

  • install cvpods locally (requires cuda to compile)
python3 -m pip install 'git+https://github.com/Megvii-BaseDetection/cvpods.git'
# (add --user if you don't have permission)

# Or, to install it from a local clone:
git clone https://github.com/Megvii-BaseDetection/cvpods.git
python3 -m pip install -e cvpods

# Or,
pip install -r requirements.txt
python3 setup.py build develop
  • prepare datasets
cd /path/to/cvpods
cd datasets
ln -s /path/to/your/coco/dataset coco
  • Train & Test
git clone https://github.com/Megvii-BaseDetection/DeFCN.git
cd DeFCN/playground/detection/coco/poto.res50.fpn.coco.800size.3x_ms  # for example

# Train
pods_train --num-gpus 8

# Test
pods_test --num-gpus 8 \
    MODEL.WEIGHTS /path/to/your/save_dir/ckpt.pth # optional
    OUTPUT_DIR /path/to/your/save_dir # optional

# Multi node training
## sudo apt install net-tools ifconfig
pods_train --num-gpus 8 --num-machines N --machine-rank 0/1/.../N-1 --dist-url "tcp://MASTER_IP:port"

Results on COCO2017 val set

model assignment with NMS lr sched. mAP mAR download
FCOS one-to-many Yes 3x + ms 41.4 59.1 weight | log
FCOS baseline one-to-many Yes 3x + ms 40.9 58.4 weight | log
Anchor one-to-one No 3x + ms 37.1 60.5 weight | log
Center one-to-one No 3x + ms 35.2 61.0 weight | log
Foreground Loss one-to-one No 3x + ms 38.7 62.2 weight | log
POTO one-to-one No 3x + ms 39.2 61.7 weight | log
POTO + 3DMF one-to-one No 3x + ms 40.6 61.6 weight | log
POTO + 3DMF + Aux mixture* No 3x + ms 41.4 61.5 weight | log

* We adopt a one-to-one assignment in POTO and a one-to-many assignment in the auxiliary loss, respectively.

  • 2x + ms schedule is adopted in the paper, but we adopt 3x + ms schedule here to achieve higher performance.
  • It's normal to observe ~0.3AP noise in POTO.

Results on CrowdHuman val set

model assignment with NMS lr sched. AP50 mMR recall download
FCOS one-to-many Yes 30k iters 86.1 54.9 94.2 weight | log
ATSS one-to-many Yes 30k iters 87.2 49.7 94.0 weight | log
POTO one-to-one No 30k iters 88.5 52.2 96.3 weight | log
POTO + 3DMF one-to-one No 30k iters 88.8 51.0 96.6 weight | log
POTO + 3DMF + Aux mixture* No 30k iters 89.1 48.9 96.5 weight | log

* We adopt a one-to-one assignment in POTO and a one-to-many assignment in the auxiliary loss, respectively.

  • It's normal to observe ~0.3AP noise in POTO, and ~1.0mMR noise in all methods.

Ablations on COCO2017 val set

model assignment with NMS lr sched. mAP mAR note
POTO one-to-one No 6x + ms 40.0 61.9
POTO one-to-one No 9x + ms 40.2 62.3
POTO one-to-one No 3x + ms 39.2 61.1 replace Hungarian algorithm by argmax
POTO + 3DMF one-to-one No 3x + ms 40.9 62.0 remove GN in 3DMF
POTO + 3DMF + Aux mixture* No 3x + ms 41.5 61.5 remove GN in 3DMF

* We adopt a one-to-one assignment in POTO and a one-to-many assignment in the auxiliary loss, respectively.

  • For one-to-one assignment, more training iters lead to higher performance.
  • The argmax (also known as top-1) operation is indeed the approximate solution of bipartite matching in dense prediction methods.
  • It seems harmless to remove GN in 3DMF, which also leads to higher inference speed.

Acknowledgement

This repo is developed based on cvpods. Please check cvpods for more details and features.

License

This repo is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Citing

If you use this work in your research or wish to refer to the baseline results published here, please use the following BibTeX entries:

@article{wang2020end,
  title   =  {End-to-End Object Detection with Fully Convolutional Network},
  author  =  {Wang, Jianfeng and Song, Lin and Li, Zeming and Sun, Hongbin and Sun, Jian and Zheng, Nanning},
  journal =  {arXiv preprint arXiv:2012.03544},
  year    =  {2020}
}

Contributing to the project

Any pull requests or issues about the implementation are welcome. If you have any issue about the library (e.g. installation, environments), please refer to cvpods.

Owner
BaseDetection Team of Megvii
Tutorial in Python targeted at Epidemiologists. Will discuss the basics of analysis in Python 3

Python-for-Epidemiologists This repository is an introduction to epidemiology analyses in Python. Additionally, the tutorials for my library zEpid are

Paul Zivich 120 Nov 17, 2022
Official implementation for "QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation" (CVPR 2022)

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation (CVPR2022) https://arxiv.org/abs/2203.08483 Unpaired image-to-image (I2I

Xueqi Hu 50 Dec 16, 2022
Project repo for the paper SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition

SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition (BMVC 2021) Project repo for the paper SILT: Self-supervised Lighting Trans

6 Dec 04, 2022
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Tianhong Dai 6 Jul 18, 2022
UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down. UpChecker - just run file and use project easy

UpChecker UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down.

Yan 4 Apr 07, 2022
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith

1 Sep 14, 2020
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Hieu Duong 7 Jan 12, 2022
Bravia core script for python

Bravia-Core-Script You need to have a mandatory account If this L3 does not work, try another L3. enjoy

5 Dec 26, 2021
Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

Zhiliang Peng 378 Jan 08, 2023
NeurIPS-2021: Neural Auto-Curricula in Two-Player Zero-Sum Games.

NAC Official PyTorch implementation of NAC from the paper: Neural Auto-Curricula in Two-Player Zero-Sum Games. We release code for: Gradient based ora

Xidong Feng 19 Nov 11, 2022
yolov5目标检测模型的知识蒸馏(基于响应的蒸馏)

代码地址: https://github.com/Sharpiless/yolov5-knowledge-distillation 教师模型: python train.py --weights weights/yolov5m.pt \ --cfg models/yolov5m.ya

52 Dec 04, 2022
Official code for 'Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning' [ICCV 2021]

RTFM This repo contains the Pytorch implementation of our paper: Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Lear

Yu Tian 242 Jan 08, 2023
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines.

The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines. It includes tools for downloading pipelines and their dependencies and tools for measuring their performace

8 Dec 04, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization

RainNet — Official Pytorch Implementation Region-aware Adaptive Instance Normalization for Image Harmonization Jun Ling, Han Xue, Li Song*, Rong Xie,

130 Dec 11, 2022
Official Pytorch Implementation for Splicing ViT Features for Semantic Appearance Transfer presenting Splice

Splicing ViT Features for Semantic Appearance Transfer [Project Page] Splice is a method for semantic appearance transfer, as described in Splicing Vi

Omer Bar Tal 253 Jan 06, 2023
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022