Code for the CVPR2022 paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity"

Overview

Introduction

This is an official release of the paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity" (arxiv link). Overview

Abstract: Current adversarial attack research reveals the vulnerability of learning-based classifiers against carefully crafted perturbations. However, most existing attack methods have inherent limitations in cross-dataset generalization as they rely on a classification layer with a closed set of categories. Furthermore, the perturbations generated by these methods may appear in regions easily perceptible to the human visual system (HVS). To circumvent the former problem, we propose a novel algorithm that attacks semantic similarity on feature representations. In this way, we are able to fool classifiers without limiting attacks to a specific dataset. For imperceptibility, we introduce the low-frequency constraint to limit perturbations within high-frequency components, ensuring perceptual similarity between adversarial examples and originals. Extensive experiments on three datasets(CIFAR-10, CIFAR-100, and ImageNet-1K) and three public online platforms indicate that our attack can yield misleading and transferable adversarial examples across architectures and datasets. Additionally, visualization results and quantitative performance (in terms of four different metrics) show that the proposed algorithm generates more imperceptible perturbations than the state-of-the-art methods. Our code will be publicly available.

Requirements

  • python ==3.6
  • torch == 1.7.0
  • torchvision >= 0.7
  • numpy == 1.19.2
  • Pillow == 8.0.1
  • pywt

Required Dataset

  1. The data structure of Cifar10, Cifar100, ImageNet or any other datasets look like below. Please modify the dataloader at SSAH-Adversarial-master/main.py/ accordingly for your dataset structure.
/dataset/
├── Cifar10
│   │   ├── cifar-10-python.tar.gz
├── Cifar-100-python
│   │   ├── cifar-100-python.tar.gz
├── imagenet
│   ├── val
│   │   ├── n02328150

Experiments

We trained a resnet20 model with 92.6% accuracy with CIFAR1010 and a resnet20 model with 69.63% accuracy with CIFAR100. If you want to have a test, you can download our pre-trained models with the Google Drivers. If you want to use our algorithm to attack your own trained model, you can always replace our models in the file checkpoints.

(1)Attack the Models Trained on Cifar10

CUDA_VISIBLE_DEVICES=0,1 bash scripts/cifar/cifar10-r20.sh

(2)Attack the Models Trained on Cifar100

CUDA_VISIBLE_DEVICES=0,1 bash scripts/cifar/cifar100-r20.sh

(2)Attack the Models Trained on Imagenet_val

CUDA_VISIBLE_DEVICES=0,1 bash scripts/cifar/Imagenet_val-r50.sh

Examples

example

Results on CIFAR10 Here we offer some experiment results. You can get more results in our paper.

Name Knowledge ASR(%) L2 Linf FID LF Paper
BIM White Box 100.0 0.85 0.03 14.85 0.25 ICLR2017
PGD White Box 100.0 1.28 0.03 27.86 0.34 arxiv link
MIM White Box 100.0 1.90 0.03 26.00 0.48 CVPR2018
AutoAttack White Box 100.0 1.91 0.03 34.93 0.61 ICML2020
AdvDrop White Box 99.92 0.90 0.07 16.34 0.34 ICCV2021
C&W White Box 100.0 0.39 0.06 8.23 0.11 IEEE SSP2017
PerC-AL White Box 98.29 0.86 0.18 9.58 0.15 CVPR2020
SSA White Box 99.96 0.29 0.02 5.73 0.07 CVPR2022
SSAH White Box 99.94 0.26 0.02 5.03 0.03 CVPR2022

Citation

if the code or method help you in the research, please cite the following paper:

@article{luo2022frequency,
  title={Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity},
  author={Luo, Cheng and Lin, Qinliang and Xie, Weicheng and Wu, Bizhu and Xie, Jinheng and Shen, Linlin},
  journal={arXiv preprint arXiv:2203.05151},
  year={2022}
}
Face uncertainty quantification or estimation using PyTorch.

Face-uncertainty-pytorch This is a demo code of face uncertainty quantification or estimation using PyTorch. The uncertainty of face recognition is af

Kaen 3 Sep 16, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)

Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P

Approximately Correct Machine Intelligence (ACMI) Lab 23 Dec 28, 2022
SegNet including indices pooling for Semantic Segmentation with tensorflow and keras

SegNet SegNet is a model of semantic segmentation based on Fully Comvolutional Network. This repository contains the implementation of learning and te

Yuta Kamikawa 172 Dec 23, 2022
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022
implicit displacement field

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
Implements VQGAN+CLIP for image and video generation, and style transfers, based on text and image prompts. Emphasis on ease-of-use, documentation, and smooth video creation.

VQGAN-CLIP-GENERATOR Overview This is a package (with available notebook) for running VQGAN+CLIP locally, with a focus on ease of use, good documentat

Ryan Hamilton 98 Dec 30, 2022
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models Description Recent research has shown that numerous human-interpretable

Luke Melas-Kyriazi 61 Oct 17, 2022
Tree LSTM implementation in PyTorch

Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati

Riddhiman Dasgupta 529 Dec 10, 2022
Pytorch implementation of One-Shot Affordance Detection

One-shot Affordance Detection PyTorch implementation of our one-shot affordance detection models. This repository contains PyTorch evaluation code, tr

46 Dec 12, 2022
The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible

pyrelational is a python active learning library developed by Relation Therapeutics for rapidly implementing active learning pipelines from data management, model development (and Bayesian approximat

Relation Therapeutics 95 Dec 27, 2022
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

7 Jun 22, 2022
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"

Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with

Aparna Aketi 0 Nov 23, 2021
The code of paper 'Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection'

Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection Pytorch implemetation of paper 'Learning to Aggregate and Personalize

Tencent YouTu Research 136 Dec 29, 2022
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

CopeNLU 36 Dec 05, 2022
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

8 May 25, 2022