The code of paper 'Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection'

Overview

Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection

Pytorch implemetation of paper 'Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection'

Introduction

This repository contains demo of LAP (Learning to Aggregate and Personalize) framework for reconstructing 3D face. Right now we provide an early version of demo for testing on in-the-wild images. The output size is 128 and the model is finetuned on CelebAMask-HQ Dataset.

Requirments

The code is tested on pytorch 1.3.0 with torchvision 0.4.1

pip install torch==1.3.0
pip install torchvision==0.4.1

Neural renderer is needed to render the reconstructed images or videos

pip install neural_renderer_pytorch

It may fail if you have a GCC version below 5. If you do not want to upgrade your GCC, one alternative solution is to use conda's GCC and compile the package from source. For example:

conda install gxx_linux-64=7.3
git clone https://github.com/daniilidis-group/neural_renderer.git
cd neural_renderer
python setup.py install

Facenet is also needed to detect and crop human faces in images.

pip install facenet-pytorch

DEMO

Download the pretrained model, and then run:

python demo.py --input ./images --result ./results --checkpoint_lap ./demo/checkpoint300.pth

Options:

--gpu: enable gpu

--detect_human_face: enable automatic human face detection and cropping using MTCNN provided in facenet-pytorch

--render_video: render 3D animations using neural_renderer (GPU is required)

Note:

The output depth is transformed by several options and functions, including tanh(), depth_rescaler and depth_inv_rescaler for better visualization. You could search along these options to find the original output depth and rescale it to a required range. The defined direction of normal in normal maps may be different to your required setting. If you want to accelarate the inference procedure, you may delete the branches irrelavant to reconstruct depth, and set anti_aliasing=False in each renderer.

License

The code contained in this repository is under MIT License and is free for commercial and non-commercial purposes. The dependencies, in particular, neural-renderer-pytorch, facenet, may have its own license.

Citation

@InProceedings{Zhang_2021_CVPR,
    author    = {Zhang, Zhenyu and Ge, Yanhao and Chen, Renwang and Tai, Ying and Yan, Yan and Yang, Jian and Wang, Chengjie and Li, Jilin and Huang, Feiyue},
    title     = {Learning To Aggregate and Personalize 3D Face From In-the-Wild Photo Collection},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    year      = {2021},
    pages     = {14214-14224}
}
Owner
Tencent YouTu Research
Tencent YouTu Research
Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Simple and Robust Loss Design for Multi-Label Learning with Missing Labels Official PyTorch Implementation of the paper Simple and Robust Loss Design

Xinyu Huang 28 Oct 27, 2022
This is the official repository of XVFI (eXtreme Video Frame Interpolation)

XVFI This is the official repository of XVFI (eXtreme Video Frame Interpolation), https://arxiv.org/abs/2103.16206 Last Update: 20210607 We provide th

Jihyong Oh 195 Dec 29, 2022
Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Scott Fujimoto 193 Dec 23, 2022
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
I will implement Fastai in each projects present in this repository.

DEEP LEARNING FOR CODERS WITH FASTAI AND PYTORCH The repository contains a list of the projects which I have worked on while reading the book Deep Lea

Thinam Tamang 43 Dec 20, 2022
Implementation of the Paper: "Parameterized Hypercomplex Graph Neural Networks for Graph Classification" by Tuan Le, Marco Bertolini, Frank Noé and Djork-Arné Clevert

Parameterized Hypercomplex Graph Neural Networks (PHC-GNNs) PHC-GNNs (Le et al., 2021): https://arxiv.org/abs/2103.16584 PHM Linear Layer Illustration

Bayer AG 26 Aug 11, 2022
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
This is the repo for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement".

Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement This is the repository for the paper "Improving the Accuracy-Memory Trad

3 Dec 29, 2022
Implementation of 'X-Linear Attention Networks for Image Captioning' [CVPR 2020]

Introduction This repository is for X-Linear Attention Networks for Image Captioning (CVPR 2020). The original paper can be found here. Please cite wi

JDAI-CV 240 Dec 17, 2022
Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Sparsity Probe: Analysis tool for Deep Learning Models This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning

3 Jun 09, 2021
Unofficial PyTorch Implementation of Multi-Singer

Multi-Singer Unofficial PyTorch Implementation of Multi-Singer: Fast Multi-Singer Singing Voice Vocoder With A Large-Scale Corpus. Requirements See re

SunMail-hub 123 Dec 28, 2022
Run Keras models in the browser, with GPU support using WebGL

**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the

Leon Chen 4.9k Dec 29, 2022
Listing arxiv - Personalized list of today's articles from ArXiv

Personalized list of today's articles from ArXiv Print and/or send to your gmail

Lilianne Nakazono 5 Jun 17, 2022
Unified Interface for Constructing and Managing Workflows on different workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow.

Couler What is Couler? Couler aims to provide a unified interface for constructing and managing workflows on different workflow engines, such as Argo

Couler Project 781 Jan 03, 2023
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
Learning to Prompt for Vision-Language Models.

CoOp Paper: Learning to Prompt for Vision-Language Models Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu CoOp (Context Optimization)

Kaiyang 679 Jan 04, 2023
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
Restricted Boltzmann Machines in Python.

How to Use First, initialize an RBM with the desired number of visible and hidden units. rbm = RBM(num_visible = 6, num_hidden = 2) Next, train the m

Edwin Chen 928 Dec 30, 2022
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 03, 2023