Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.

Overview


Release Website Documentation Discord


Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create, store, manipulate, search and analyse vectors alongside json documents to power applications such as neural search, semantic search, personalised recommendations recommendations etc.


Features

  • Multimedia Data Vectorisation: Image2Vec, Audio2Vec, etc (Any data can be turned into vectors through machine learning)
  • Document Orientated Store: Store your vectors alongside documents without having to do a db lookup for metadata about the vectors.
  • Vector Similarity Search: Enable searching of vectors and rich multimedia with vector similarity search. The backbone of many popular A.I use cases like reverse image search, recommendations, personalisation, etc.
  • Hybrid Search: There are scenarios where vector search is not as effective as traditional search, e.g. searching for skus. Vector AI lets you combine vector search with all the features of traditional search such as filtering, fuzzy search, keyword matching to create an even more powerful search.
  • Multi-Model Weighted Search: Our Vector search is highly customisable and you can peform searches with multiple vectors from multiple models and give them different weightings.
  • Vector Operations: Flexible search with out of the box operations on vectors. e.g. mean, median, sum, etc.
  • Aggregation: All the traditional aggregation you'd expect. e.g. group by mean, pivot tables, etc
  • Clustering: Interpret your vectors and data by allocating them to buckets and get statistics about these different buckets based on data you provide.
  • Vector Analytics: Get better understanding of your vectors by using out-of-the-box practical vector analytics, giving you better understanding of the quality of your vectors.

Quick Terminologies

  • Models/Encoders (aka. Embedders) ~ Turns data into vectors e.g. Word2Vec turns words into vector
  • Vector Similarity Search (aka. Nearest Neighbor Search, Distance Search)
  • Collection (aka. Index, Table) ~ a collection is made up of multiple documents
  • Documents (aka. Json, Item, Dictionary, Row) ~ a document can contain vectors, text and links to videos/images/audio.

QuickStart

Install via pip! Compatible with any OS.

pip install vectorai

If you require the nightly version due to on-going improvements, you can install the nightly version using:

pip install vectorai-nightly

Note: while the nightly version will still pass automated tests, it may not be stable.

Check out our quickstart notebook on how to make a text/image/audio search engine in 5 minutes: quickstart.ipynb

from vectorai import ViClient, request_api_key

api_key = request_api_key(username=<username>, email=<email>, description=<description>, referral_code="github_referred")

vi_client = ViClient(username=username, api_key=api_key)

from vectorai.models.deployed import ViText2Vec
text_encoder = ViText2Vec(username, api_key)

documents = [
    {
        '_id': 0,
        'color': 'red'
    },
    {
        '_id': 1,
        'color': 'blue'
    }
]

# Insert the data
vi_client.insert_documents('test-collection', documents, models={'color': text_encoder.encode})

# Search the data
vi_client.search('test-collection', text_encoder.encode('maroon'), 'color_vector_', page_size=2)

# Get Recommendations
vi_client.search_by_id('test-collection', '1', 'color_vector_', page_size=2)

Access Powerful Vector Analytics

Vector AI has powerful visualisations to allow you to analyse your vectors as easily as possible - in 1 line of code.

vi_client.plot_dimensionality_reduced_vectors(documents, 
    point_label='title', 
    dim_reduction_field='_dr_ivis', 
    cluster_field='centroid_title', cluster_label='centroid_title')

View Dimensionality-Reduced Vectors

vi_client.plot_2d_cosine_similarity(
    documents,
    documents[0:2],
    vector_fields=['use_vector_'],
    label='name',
    anchor_document=documents[0]
)

Compare vectors and their search performance on your documents easily! 1D plot cosine simlarity


Why Vector AI compared to other Nearest Neighbor implementations?

  • Production Ready: Our API is fully managed and can scale to power hundreds of millions of searches a day. Even at millions of searches it is blazing fast through edge caching, GPU utilisation and software optimisation so you never have to worry about scaling your infrastructure as your use case scales.
  • Simple to use. Quick to get started.: One of our core design principles is that we focus on how people can get started on using Vector AI as quickly as possible, whilst ensuring there is still a tonne of functionality and customisability options.
  • Richer understanding of your vectors and their properties: Our library is designed to allow people to do more than just obtain nearest neighbors, but to actually experiment, analyse, interpret and improve on them the moment the data added to the index.
  • Store vector data with ease: The document-orientated nature for Vector AI allows users to label, filter search and understand their vectors as much as possible.
  • Real time access to data: Vector AI data is accessible in real time, as soon as the data is inserted it is searchable straight away. No need to wait hours to build an index.
  • Framework agnostic: We are never going to force a specific framework on Vector AI. If you have a framework of choice, you can use it - as long as your documents are JSON-serializable!

Using VectorHub Models

VectorHub is Vector AI's main model repository. Models from VectorHub are built with scikit-learn interfaces and all have examples of Vector AI integration. If you are looking to experiment with new off-the-shelf models, we recommend giving VectorHub models a go - all of them have been tested on Colab and are able to be used in as little as 3 lines of code!

Schema Rules for documents (BYO Vectors and IDs)

Ensure that any vector fields contain a '_vector_' in its name and that any ID fields have the name '_id'.

For example:

example_item = {
    '_id': 'James',
    'skills_vector_': [0.123, 0.456, 0.789, 0.987, 0.654, 0.321]
}

The following will not be recognised as ID columns or vector columns.

example_item = {
    'name_id': 'James',
    'skillsvector_': [0.123, 0.456, 0.789, 0.987, 0.654, 0.321]
}

How does this differ from the VectorAI API?

The Python SDK is designed to provide a way for Pythonistas to unlock the power of VectorAI in as few lines as code as possible. It exposes all the elements of an API through our open-sourced automation tool and is the main way our data scientists and engineers interact with the VectorAI engine for quick prototyping before developers utilise API requests.

Note: The VectorAI SDK is built on the development server which can sometimes cause errors. However, this is important to ensure that users are able to access the most cutting-edge features as required. If you run into such issues, we recommend creating a GitHub Issue if it is non-urgent, but feel free to ping the Discord channel for more urgent enquiries.


Building Products with Vector AI

Creating a multi-language AI fashion assistant: https://fashionfiesta.me | Blog

Demo

Do share with us any blogs or websites you create with Vector AI!

You might also like...
The end-to-end platform for building voice products at scale
The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Python library containing BART query generation and BERT-based Siamese models for neural retrieval.
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.

Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as

Repo for CVPR2021 paper
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

SEOVER-Master This code is the implementation of paper: SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.
QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

QuakeLabeler Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently bu

The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.
The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.

Temporal Query Networks for Fine-grained Video Understanding 📋 This repository contains the implementation of CVPR2021 paper Temporal_Query_Networks

Generative Query Network (GQN) in PyTorch as described in
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Comments
  • Accessing Discord

    Accessing Discord

    Hi Vector AI Team!

    I'm trying to access the Discord invite link mentioned in the readme: https://discord.gg/CbwUxyD But getting an "invalid invite link".

    I'm writing a new blog post covering the many neural search frameworks, in spirit of my blog post on Vector DBs: https://towardsdatascience.com/milvus-pinecone-vespa-weaviate-vald-gsi-what-unites-these-buzz-words-and-what-makes-each-9c65a3bd0696

    If that's okay, I'd like to ask a couple of questions on the inner workings of the framework and some of its features.

    Thanks,

    Dmitry

    opened by DmitryKey 0
  • Same search results for searching very different images.

    Same search results for searching very different images.

    Using the unsplash-images collection: https://playground.getvectorai.com/collections/?collection=unsplash-images

    result for: vi_client.search_image('unsplash-images', image_url, ['image_url_vector_']) with image_url as: https://www.rover.com/blog/wp-content/uploads/2020/06/siberian-husky-4735878_1920.jpg https://davidkerrphotography.co.nz/wp-content/uploads/2016/10/Slide01.jpg

    identical result for both:

    {'count': 17506,
     'results': [{'_clusters_': {},
                  '_id': 'tLUgvVaCQnY',
                  '_search_score': 0.6311334,
                  'dictionary_label_1': 'wineglasses',
                  'dictionary_label_2': 'delftware',
                  'image_url': 'https://images.unsplash.com/photo-1540735242080-bc0ad0cdcd1e?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.205446',
                  'likes': 150005},
                 {'_clusters_': {},
                  '_id': 'wVMuNOSt5KY',
                  '_search_score': 0.6278121000000001,
                  'dictionary_label_2': 'bootstrapping',
                  'image_url': 'https://images.unsplash.com/photo-1556912743-90a361c19b16?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.018132',
                  'likes': 173693},
                 {'_clusters_': {},
                  '_id': 'kkBXGVE9k-8',
                  '_search_score': 0.626989,
                  'dictionary_label_1': 'occupant',
                  'dictionary_label_2': 'catabolized',
                  'image_url': 'https://images.unsplash.com/photo-1526529516337-f40ddc5532e2?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.129598',
                  'likes': 627490},
                 {'_clusters_': {},
                  '_id': 'pLshzlb5yOA',
                  '_search_score': 0.6268415,
                  'dictionary_label_2': 'wood',
                  'image_url': 'https://images.unsplash.com/photo-1582459208380-f99d357adf33?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.096761',
                  'likes': 173756},
                 {'_clusters_': {},
                  '_id': 'sHmW616civc',
                  '_search_score': 0.6268100999999999,
                  'dictionary_label_2': 'trail',
                  'image_url': 'https://images.unsplash.com/photo-1556674524-65bf99573bef?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.000302',
                  'likes': 682592},
                 {'_clusters_': {},
                  '_id': 'VoTqMJLLSI8',
                  '_search_score': 0.6235797000000001,
                  'dictionary_label_1': 'trays',
                  'dictionary_label_2': 'dishware',
                  'image_url': 'https://images.unsplash.com/photo-1569272559969-2a9275513966?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.202763',
                  'likes': 172006},
                 {'_clusters_': {},
                  '_id': 'XcWKh-GF69M',
                  '_search_score': 0.6210401999999999,
                  'dictionary_label_2': 'obliging',
                  'image_url': 'https://images.unsplash.com/photo-1581280227715-56d3062138a9?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:20.517206',
                  'likes': 678324},
                 {'_clusters_': {},
                  '_id': 'b2_pVdk4lGI',
                  '_search_score': 0.6187004,
                  'dictionary_label_2': 'jukebox',
                  'image_url': 'https://images.unsplash.com/photo-1568967906094-1d0acfbf0676?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:20.509971',
                  'likes': 138088},
                 {'_clusters_': {},
                  '_id': '22HltbHJbPI',
                  '_search_score': 0.6182232000000001,
                  'dictionary_label_1': 'shoreline',
                  'dictionary_label_2': 'buckeens',
                  'image_url': 'https://images.unsplash.com/photo-1541514467948-60ec8a24e84f?w=300&q=80',
                  'insert_date_': '2021-02-25T09:44:25.156647',
                  'likes': 758805},
                 {'_clusters_': {},
                  '_id': 'uM3pEsEkPHA',
                  '_search_score': 0.6179558,
                  'dictionary_label_2': 'dewclaw',
                  'image_url': 'https://images.unsplash.com/photo-1572725364984-c2a074c6740c?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.111128',
                  'likes': 655907}]}
    
    opened by elliotsayes 4
  • Bulid type-safe assertive decorator

    Bulid type-safe assertive decorator

    With Python's type-safety is difficult but it can be implemented through smart use of Python decorators. An interesting example can be seen below:

    import itertools as it
    
    @parametrized
    def types(f, *types):
        def rep(*args):
            for a, t, n in zip(args, types, it.count()):
                if type(a) is not t:
                    raise TypeError('Value %d has not type %s. %s instead' %
                        (n, t, type(a))
                    )
            return f(*args)
        return rep
    
    @types(str, int)  # arg1 is str, arg2 is int
    def string_multiply(text, times):
        return text * times
    
    print(string_multiply('hello', 3))    # Prints hellohellohello
    print(string_multiply(3, 3))          # Fails miserably with TypeError
    
    # From: https://stackoverflow.com/questions/5929107/decorators-with-parameters
    
    enhancement 
    opened by boba-and-beer 0
Releases(v0.2.5)
ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

232 Dec 25, 2022
Pytorch implementation of the AAAI 2022 paper "Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification"

[AAAI22] Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification We point out the overlooked unbiasedness in long-tailed clas

PatatiPatata 28 Oct 18, 2022
Veri Setinizi Yolov5 Formatına Dönüştürün

Veri Setinizi Yolov5 Formatına Dönüştürün! Bu Repo da Neler Var? Xml Formatındaki Veri Setini .Txt Formatına Çevirme Xml Formatındaki Dosyaları Silme

Kadir Nar 4 Aug 22, 2022
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
Analyses of the individual electric field magnitudes with Roast.

Aloi Davide - PhD Student (UoB) Analysis of electric field magnitudes (wp2a dataset only at the moment) and correlation analysis with Dynamic Causal M

Davide Aloi 7 Dec 15, 2022
A library for performing coverage guided fuzzing of neural networks

TensorFuzz: Coverage Guided Fuzzing for Neural Networks This repository contains a library for performing coverage guided fuzzing of neural networks,

Brain Research 195 Dec 28, 2022
なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモ

FaceDetection-Anti-Spoof-Demo なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモです。 モデルはPINTO_model_zoo/191_anti-spoof-mn3からONNX形式のモデルを使用しています。 Requirement mediapipe

KazuhitoTakahashi 8 Nov 18, 2022
Super Pix Adv - Offical implemention of Robust Superpixel-Guided Attentional Adversarial Attack (CVPR2020)

Super_Pix_Adv Offical implemention of Robust Superpixel-Guided Attentional Adver

DLight 8 Oct 26, 2022
A collection of implementations of deep domain adaptation algorithms

Deep Transfer Learning on PyTorch This is a PyTorch library for deep transfer learning. We divide the code into two aspects: Single-source Unsupervise

Yongchun Zhu 647 Jan 03, 2023
Code for 1st place solution in Sleep AI Challenge SNU Hospital

Sleep AI Challenge SNU Hospital 2021 Code for 1st place solution for Sleep AI Challenge (Note that the code is not fully organized) Refer to the notio

Saewon Yang 13 Jan 03, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad to your characters in Modo.

Applicator Kit for Modo Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad with a TrueDepth camera to

Andrew Buttigieg 3 Aug 24, 2021
CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors   In order to facilitate the res

yujmo 11 Dec 12, 2022
Automated Evidence Collection for Fake News Detection

Automated Evidence Collection for Fake News Detection This is the code repo for the Automated Evidence Collection for Fake News Detection paper accept

Mrinal Rawat 2 Apr 12, 2022
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

Ramón Casero 1 Jan 07, 2022
SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning

SPCL SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning Update on 2021/11/25: ArXiv Ver

Binhui Xie (谢斌辉) 11 Oct 29, 2022
Object tracking implemented with YOLOv4, DeepSort, and TensorFlow.

Object tracking implemented with YOLOv4, DeepSort, and TensorFlow. YOLOv4 is a state of the art algorithm that uses deep convolutional neural networks to perform object detections. We can take the ou

The AI Guy 1.1k Dec 29, 2022