Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.

Overview


Release Website Documentation Discord


Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create, store, manipulate, search and analyse vectors alongside json documents to power applications such as neural search, semantic search, personalised recommendations recommendations etc.


Features

  • Multimedia Data Vectorisation: Image2Vec, Audio2Vec, etc (Any data can be turned into vectors through machine learning)
  • Document Orientated Store: Store your vectors alongside documents without having to do a db lookup for metadata about the vectors.
  • Vector Similarity Search: Enable searching of vectors and rich multimedia with vector similarity search. The backbone of many popular A.I use cases like reverse image search, recommendations, personalisation, etc.
  • Hybrid Search: There are scenarios where vector search is not as effective as traditional search, e.g. searching for skus. Vector AI lets you combine vector search with all the features of traditional search such as filtering, fuzzy search, keyword matching to create an even more powerful search.
  • Multi-Model Weighted Search: Our Vector search is highly customisable and you can peform searches with multiple vectors from multiple models and give them different weightings.
  • Vector Operations: Flexible search with out of the box operations on vectors. e.g. mean, median, sum, etc.
  • Aggregation: All the traditional aggregation you'd expect. e.g. group by mean, pivot tables, etc
  • Clustering: Interpret your vectors and data by allocating them to buckets and get statistics about these different buckets based on data you provide.
  • Vector Analytics: Get better understanding of your vectors by using out-of-the-box practical vector analytics, giving you better understanding of the quality of your vectors.

Quick Terminologies

  • Models/Encoders (aka. Embedders) ~ Turns data into vectors e.g. Word2Vec turns words into vector
  • Vector Similarity Search (aka. Nearest Neighbor Search, Distance Search)
  • Collection (aka. Index, Table) ~ a collection is made up of multiple documents
  • Documents (aka. Json, Item, Dictionary, Row) ~ a document can contain vectors, text and links to videos/images/audio.

QuickStart

Install via pip! Compatible with any OS.

pip install vectorai

If you require the nightly version due to on-going improvements, you can install the nightly version using:

pip install vectorai-nightly

Note: while the nightly version will still pass automated tests, it may not be stable.

Check out our quickstart notebook on how to make a text/image/audio search engine in 5 minutes: quickstart.ipynb

from vectorai import ViClient, request_api_key

api_key = request_api_key(username=<username>, email=<email>, description=<description>, referral_code="github_referred")

vi_client = ViClient(username=username, api_key=api_key)

from vectorai.models.deployed import ViText2Vec
text_encoder = ViText2Vec(username, api_key)

documents = [
    {
        '_id': 0,
        'color': 'red'
    },
    {
        '_id': 1,
        'color': 'blue'
    }
]

# Insert the data
vi_client.insert_documents('test-collection', documents, models={'color': text_encoder.encode})

# Search the data
vi_client.search('test-collection', text_encoder.encode('maroon'), 'color_vector_', page_size=2)

# Get Recommendations
vi_client.search_by_id('test-collection', '1', 'color_vector_', page_size=2)

Access Powerful Vector Analytics

Vector AI has powerful visualisations to allow you to analyse your vectors as easily as possible - in 1 line of code.

vi_client.plot_dimensionality_reduced_vectors(documents, 
    point_label='title', 
    dim_reduction_field='_dr_ivis', 
    cluster_field='centroid_title', cluster_label='centroid_title')

View Dimensionality-Reduced Vectors

vi_client.plot_2d_cosine_similarity(
    documents,
    documents[0:2],
    vector_fields=['use_vector_'],
    label='name',
    anchor_document=documents[0]
)

Compare vectors and their search performance on your documents easily! 1D plot cosine simlarity


Why Vector AI compared to other Nearest Neighbor implementations?

  • Production Ready: Our API is fully managed and can scale to power hundreds of millions of searches a day. Even at millions of searches it is blazing fast through edge caching, GPU utilisation and software optimisation so you never have to worry about scaling your infrastructure as your use case scales.
  • Simple to use. Quick to get started.: One of our core design principles is that we focus on how people can get started on using Vector AI as quickly as possible, whilst ensuring there is still a tonne of functionality and customisability options.
  • Richer understanding of your vectors and their properties: Our library is designed to allow people to do more than just obtain nearest neighbors, but to actually experiment, analyse, interpret and improve on them the moment the data added to the index.
  • Store vector data with ease: The document-orientated nature for Vector AI allows users to label, filter search and understand their vectors as much as possible.
  • Real time access to data: Vector AI data is accessible in real time, as soon as the data is inserted it is searchable straight away. No need to wait hours to build an index.
  • Framework agnostic: We are never going to force a specific framework on Vector AI. If you have a framework of choice, you can use it - as long as your documents are JSON-serializable!

Using VectorHub Models

VectorHub is Vector AI's main model repository. Models from VectorHub are built with scikit-learn interfaces and all have examples of Vector AI integration. If you are looking to experiment with new off-the-shelf models, we recommend giving VectorHub models a go - all of them have been tested on Colab and are able to be used in as little as 3 lines of code!

Schema Rules for documents (BYO Vectors and IDs)

Ensure that any vector fields contain a '_vector_' in its name and that any ID fields have the name '_id'.

For example:

example_item = {
    '_id': 'James',
    'skills_vector_': [0.123, 0.456, 0.789, 0.987, 0.654, 0.321]
}

The following will not be recognised as ID columns or vector columns.

example_item = {
    'name_id': 'James',
    'skillsvector_': [0.123, 0.456, 0.789, 0.987, 0.654, 0.321]
}

How does this differ from the VectorAI API?

The Python SDK is designed to provide a way for Pythonistas to unlock the power of VectorAI in as few lines as code as possible. It exposes all the elements of an API through our open-sourced automation tool and is the main way our data scientists and engineers interact with the VectorAI engine for quick prototyping before developers utilise API requests.

Note: The VectorAI SDK is built on the development server which can sometimes cause errors. However, this is important to ensure that users are able to access the most cutting-edge features as required. If you run into such issues, we recommend creating a GitHub Issue if it is non-urgent, but feel free to ping the Discord channel for more urgent enquiries.


Building Products with Vector AI

Creating a multi-language AI fashion assistant: https://fashionfiesta.me | Blog

Demo

Do share with us any blogs or websites you create with Vector AI!

You might also like...
The end-to-end platform for building voice products at scale
The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Python library containing BART query generation and BERT-based Siamese models for neural retrieval.
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.

Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as

Repo for CVPR2021 paper
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

SEOVER-Master This code is the implementation of paper: SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.
QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

QuakeLabeler Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently bu

The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.
The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.

Temporal Query Networks for Fine-grained Video Understanding 📋 This repository contains the implementation of CVPR2021 paper Temporal_Query_Networks

Generative Query Network (GQN) in PyTorch as described in
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Comments
  • Accessing Discord

    Accessing Discord

    Hi Vector AI Team!

    I'm trying to access the Discord invite link mentioned in the readme: https://discord.gg/CbwUxyD But getting an "invalid invite link".

    I'm writing a new blog post covering the many neural search frameworks, in spirit of my blog post on Vector DBs: https://towardsdatascience.com/milvus-pinecone-vespa-weaviate-vald-gsi-what-unites-these-buzz-words-and-what-makes-each-9c65a3bd0696

    If that's okay, I'd like to ask a couple of questions on the inner workings of the framework and some of its features.

    Thanks,

    Dmitry

    opened by DmitryKey 0
  • Same search results for searching very different images.

    Same search results for searching very different images.

    Using the unsplash-images collection: https://playground.getvectorai.com/collections/?collection=unsplash-images

    result for: vi_client.search_image('unsplash-images', image_url, ['image_url_vector_']) with image_url as: https://www.rover.com/blog/wp-content/uploads/2020/06/siberian-husky-4735878_1920.jpg https://davidkerrphotography.co.nz/wp-content/uploads/2016/10/Slide01.jpg

    identical result for both:

    {'count': 17506,
     'results': [{'_clusters_': {},
                  '_id': 'tLUgvVaCQnY',
                  '_search_score': 0.6311334,
                  'dictionary_label_1': 'wineglasses',
                  'dictionary_label_2': 'delftware',
                  'image_url': 'https://images.unsplash.com/photo-1540735242080-bc0ad0cdcd1e?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.205446',
                  'likes': 150005},
                 {'_clusters_': {},
                  '_id': 'wVMuNOSt5KY',
                  '_search_score': 0.6278121000000001,
                  'dictionary_label_2': 'bootstrapping',
                  'image_url': 'https://images.unsplash.com/photo-1556912743-90a361c19b16?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.018132',
                  'likes': 173693},
                 {'_clusters_': {},
                  '_id': 'kkBXGVE9k-8',
                  '_search_score': 0.626989,
                  'dictionary_label_1': 'occupant',
                  'dictionary_label_2': 'catabolized',
                  'image_url': 'https://images.unsplash.com/photo-1526529516337-f40ddc5532e2?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.129598',
                  'likes': 627490},
                 {'_clusters_': {},
                  '_id': 'pLshzlb5yOA',
                  '_search_score': 0.6268415,
                  'dictionary_label_2': 'wood',
                  'image_url': 'https://images.unsplash.com/photo-1582459208380-f99d357adf33?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.096761',
                  'likes': 173756},
                 {'_clusters_': {},
                  '_id': 'sHmW616civc',
                  '_search_score': 0.6268100999999999,
                  'dictionary_label_2': 'trail',
                  'image_url': 'https://images.unsplash.com/photo-1556674524-65bf99573bef?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.000302',
                  'likes': 682592},
                 {'_clusters_': {},
                  '_id': 'VoTqMJLLSI8',
                  '_search_score': 0.6235797000000001,
                  'dictionary_label_1': 'trays',
                  'dictionary_label_2': 'dishware',
                  'image_url': 'https://images.unsplash.com/photo-1569272559969-2a9275513966?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.202763',
                  'likes': 172006},
                 {'_clusters_': {},
                  '_id': 'XcWKh-GF69M',
                  '_search_score': 0.6210401999999999,
                  'dictionary_label_2': 'obliging',
                  'image_url': 'https://images.unsplash.com/photo-1581280227715-56d3062138a9?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:20.517206',
                  'likes': 678324},
                 {'_clusters_': {},
                  '_id': 'b2_pVdk4lGI',
                  '_search_score': 0.6187004,
                  'dictionary_label_2': 'jukebox',
                  'image_url': 'https://images.unsplash.com/photo-1568967906094-1d0acfbf0676?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:20.509971',
                  'likes': 138088},
                 {'_clusters_': {},
                  '_id': '22HltbHJbPI',
                  '_search_score': 0.6182232000000001,
                  'dictionary_label_1': 'shoreline',
                  'dictionary_label_2': 'buckeens',
                  'image_url': 'https://images.unsplash.com/photo-1541514467948-60ec8a24e84f?w=300&q=80',
                  'insert_date_': '2021-02-25T09:44:25.156647',
                  'likes': 758805},
                 {'_clusters_': {},
                  '_id': 'uM3pEsEkPHA',
                  '_search_score': 0.6179558,
                  'dictionary_label_2': 'dewclaw',
                  'image_url': 'https://images.unsplash.com/photo-1572725364984-c2a074c6740c?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.111128',
                  'likes': 655907}]}
    
    opened by elliotsayes 4
  • Bulid type-safe assertive decorator

    Bulid type-safe assertive decorator

    With Python's type-safety is difficult but it can be implemented through smart use of Python decorators. An interesting example can be seen below:

    import itertools as it
    
    @parametrized
    def types(f, *types):
        def rep(*args):
            for a, t, n in zip(args, types, it.count()):
                if type(a) is not t:
                    raise TypeError('Value %d has not type %s. %s instead' %
                        (n, t, type(a))
                    )
            return f(*args)
        return rep
    
    @types(str, int)  # arg1 is str, arg2 is int
    def string_multiply(text, times):
        return text * times
    
    print(string_multiply('hello', 3))    # Prints hellohellohello
    print(string_multiply(3, 3))          # Fails miserably with TypeError
    
    # From: https://stackoverflow.com/questions/5929107/decorators-with-parameters
    
    enhancement 
    opened by boba-and-beer 0
Releases(v0.2.5)
Training DALL-E with volunteers from all over the Internet using hivemind and dalle-pytorch (NeurIPS 2021 demo)

Training DALL-E with volunteers from all over the Internet This repository is a part of the NeurIPS 2021 demonstration "Training Transformers Together

<a href=[email protected]"> 19 Dec 13, 2022
AoT is a system for automatically generating off-target test harness by using build information.

AoT: Auto off-Target Automatically generating off-target test harness by using build information. Brought to you by the Mobile Security Team at Samsun

Samsung 10 Oct 19, 2022
Predicting Student Attentiveness using OpenCV

Predicting-Student-Attentiveness-using-OpenCV The model will predict if a student is attentive or not through facial parameter received through the st

Johann Pinto 2 Aug 20, 2022
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
Multivariate Boosted TRee

Multivariate Boosted TRee What is MBTR MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can h

SUPSI-DACD-ISAAC 61 Dec 19, 2022
A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.

TaichiSLAM This project is a 3D Dense mapping backend library of SLAM based Taichi-Lang, designed for the aerial swarm. Intro Taichi is an efficient d

XuHao 230 Dec 19, 2022
Object detection, 3D detection, and pose estimation using center point detection:

Objects as Points Object detection, 3D detection, and pose estimation using center point detection: Objects as Points, Xingyi Zhou, Dequan Wang, Phili

Xingyi Zhou 6.7k Jan 03, 2023
Code for MSc Quantitative Finance Dissertation

MSc Dissertation Code ReadMe Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks Curtis Nybo MSc Quantitative F

2 Dec 01, 2022
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Hong-Jia Chen 127 Dec 23, 2022
なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモ

FaceDetection-Anti-Spoof-Demo なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモです。 モデルはPINTO_model_zoo/191_anti-spoof-mn3からONNX形式のモデルを使用しています。 Requirement mediapipe

KazuhitoTakahashi 8 Nov 18, 2022
pq is a jq-like Pickle file viewer

pq PQ is a jq-like viewer/processing tool for pickle files. howto # pq '' file.pkl {'other': 456, 'test': 123} # pq 'table' file.pkl |other|test| | 45

3 Mar 15, 2022
An unofficial styleguide and best practices summary for PyTorch

A PyTorch Tools, best practices & Styleguide This is not an official style guide for PyTorch. This document summarizes best practices from more than a

IgorSusmelj 1.5k Jan 05, 2023
Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

NIRPS-ETC Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph February 2

Nolan Grieves 2 Sep 15, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Tr

Sber AI 230 Dec 31, 2022
YOLOX-RMPOLY

本算法为适应robomaster比赛,而改动自矩形识别的yolox算法。 基于旷视科技YOLOX,实现对不规则四边形的目标检测 TODO 修改onnx推理模型 更改/添加标注: 1.yolox/models/yolox_polyhead.py: 1.1继承yolox/models/yolo_

3 Feb 25, 2022
Pyramid addon for OpenAPI3 validation of requests and responses.

Validate Pyramid views against an OpenAPI 3.0 document Peace of Mind The reason this package exists is to give you peace of mind when providing a REST

Pylons Project 79 Dec 30, 2022
List of content farm sites like g.penzai.com.

内容农场网站清单 Google 中文搜索结果包含了相当一部分的内容农场式条目,比如「小 X 知识网」「小 X 百科网」。此种链接常会 302 重定向其主站,页面内容为自动生成,大量堆叠关键字,揉杂一些爬取到的内容,完全不具可读性和参考价值。 尤为过分的是,该类网站可能有成千上万个分身域名被 Goog

WDMPA 541 Jan 03, 2023
Python scripts form performing stereo depth estimation using the CoEx model in ONNX.

ONNX-CoEx-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the CoEx model in ONNX. Stereo depth estimation on the

Ibai Gorordo 8 Dec 29, 2022
A PyTorch implementation of Implicit Q-Learning

IQL-PyTorch This repository houses a minimal PyTorch implementation of Implicit Q-Learning (IQL), an offline reinforcement learning algorithm, along w

Garrett Thomas 30 Dec 12, 2022
Python periodic table module

elemenpy Hello! elements.py is a small Python periodic table module that is used for calling certain information about an element. Installation Instal

Eric Cheng 2 Dec 27, 2021