Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

Overview

NIRPS-ETC

Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

February 2022 - Before NIRPS on sky

Original NIRPS ETC code by Bruno L. Canto Martins 2018-2019

Additional edits by Nolan Grieves (University of Geneva) 2020-2022

Overview

  • The NIRPS ETC uses spectra from the NASA Infrared Telescope Facility (IRTF) as SEDs to get estimated flux values for different spectral types: http://irtfweb.ifa.hawaii.edu/~spex/IRTF_Spectral_Library/
  • The ETC calculates efficiency at different wavelengths using seeing, atmospheric efficiency from TAPAS (http://cds-espri.ipsl.fr/tapas/), and the measured global efficiency of the instrument
  • The signal to noise ratio (SNR) at each pixel or bin is calculated from the fiber diameter, sampling, readout noise, resolution, efficiency, and flux in the pixel or bin from the IRTF template (flux=(10.**(0.4*(Ho-H)))*flux_st)
  • RV precisions are calculated using, dRV=c/(Q*sqrt(Ne-)), equation 12 of Bouchy et al. (2001: https://ui.adsabs.harvard.edu/abs/2001A%26A...374..733B/abstract). The quality factors Q for spectra are calculated with ENIRIC from Phoenix simulated spectra or from spectral templates from the Spirou spectrograph
    • -> see: NIRPS-ETC/intermediate_preparation/update_RV_estimates/README_update_RV_estimates

Use

$ python NIRPS_ETC.py

  • change observing options within the code at the top
    • Observation Mode (HA/HE)
    • Seeing, in arcsec (range 0.7-1.2)
    • Airmass (range 1.0-2.0)
    • Object magnitude (H band)
    • Exposure time (in sec)
    • Spectral type (F0V/F5V/G0V/G5V/G8V/K0V/K3V/K7V/M0V/M1V/M2V/M3V/M4V/M5V/M6V/M7V/M8V/M9V/L1V/L2V/L3V/L4V/L5V/L6V/L8V/T2V)
    • bandpass ('CFHT' or 'Eniric') #YJH bandpasses that will affect the range of the spectra used to calculate RV precision
  • outputs mean SNR, in YJH, and each order, and RV precisisons for certain spectral types

OR use script version:

$ python NIRPS_ETC_script.py

  • change inputs for each target in a space separated text file with columns:
    • target st obs_mode seeing airmass H t_exp bandpass
  • change input and output text files within code to desired option
  • outputs to file the mean SNR, YJH SNRs, and RV precisions

Contents

  • inputs/
    • NIRPS_STAR_templates.txt
      • SEDs from IRTF (update with intermediate_preparation/update_effs/update_effs.py)
    • NIRPS_effs.txt
      • global efficiency of instrument (update with intermediate_preparation/update_effs/update_effs.py)
    • NIRPS_tapas.txt
      • atmospheric efficiency from TAPAS (update with intermediate_preparation/update_effs/update_effs.py)
    • NIRPS_wave_range.txt
      • wavelength range of echelle orders (update with intermediate_preparation/update_effs/update_effs.py)
    • phoenix_Q_conversions_CFHT-bandpass.txt
      • Q factor conversions for different resolutions in CFHT defined YJH bandpasses (update with intermediate_preparation/update_RV_estimates/phoenix_qfactor_resolution_conversion.py)
    • phoenix_Q_conversions_eniric-bandpass.txt
      • Q factor conversions for different resolutions in Eniric defined YJH bandpasses (update with intermediate_preparation/update_RV_estimates/phoenix_qfactor_resolution_conversion.py)
    • phoenix_eniric_Qfactors_CFHT-bandpass.csv
      • Q factors from Eniric in CFHT defined YJH bandpasses (update with eniric using command in intermediate_preparation/update_RV_estimates/README_update_RV_estimates)
    • phoenix_eniric_Qfactors_eniric-bandpass.csv
      • Q factors from Eniric in Eniric defined YJH bandpasses (update with eniric using command in intermediate_preparation/update_RV_estimates/README_update_RV_estimates)
    • spirou_fit_Qvalues_CFHT-bandpass.txt
      • Q factors from Spirou templates in CFHT defined YJH bandpasses (update with intermediate_preparation/update_RV_estimates/fit_spirou_qfactors.py)
    • spirou_fit_Qvalues_eniric-bandpass.txt.
      • Q factors from Spirou templates in Eniric defined YJH bandpasses (update with intermediate_preparation/update_RV_estimates/fit_spirou_qfactors.py)
  • intermediate_preparation/
    • ETC_v3.0_CantoMartins/
      • original ETC by Bruno Canto Martins
    • add_stellar_templates/
      • add and update stellar templates
    • update_RV_estimates/
      • update RV estimates and Q values
    • update_effs/
      • update efficiency files and resample wavelength grid for tapas, effs, and star_templates
  • outputs/
    • outputs SNR for each order and wavelength vs SNR plot from NIRPS_ETC.py
  • NIRPS_ETC.py
    • main ETC code for a single star
  • NIRPS_ETC_script.py
    • script that runs ETC for stars in etc_targets_input.txt and outputs to etc_targets_output.txt
  • etc_targets_input.txt
    • example input file for NIRPS_ETC_script.py
  • etc_targets_output.txt
    • example ouput file for NIRPS_ETC_script.py
  • nirps_etc_lib.py
    • definitions for fucntions in ETC code
Owner
Nolan Grieves
Postdoctoral Research Scientist [email protected]
Nolan Grieves
Sharpness-Aware Minimization for Efficiently Improving Generalization

Sharpness-Aware-Minimization-TensorFlow This repository provides a minimal implementation of sharpness-aware minimization (SAM) (Sharpness-Aware Minim

Sayak Paul 54 Dec 08, 2022
HAT: Hierarchical Aggregation Transformers for Person Re-identification

HAT: Hierarchical Aggregation Transformers for Person Re-identification

11 Sep 05, 2022
Multivariate Boosted TRee

Multivariate Boosted TRee What is MBTR MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can h

SUPSI-DACD-ISAAC 61 Dec 19, 2022
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022
Source code for paper: Knowledge Inheritance for Pre-trained Language Models

Knowledge-Inheritance Source code paper: Knowledge Inheritance for Pre-trained Language Models (preprint). The trained model parameters (in Fairseq fo

THUNLP 31 Nov 19, 2022
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 03, 2023
Camview - A CLI-tool used to stream CCTV online footage based on URL params

CamView A CLI-tool used to stream CCTV online footage based on URL params Get St

Finn Lancaster 54 Dec 09, 2022
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
Automatic Number Plate Recognition using Contours and Convolution Neural Networks (CNN)

Cite our paper if you find this project useful https://www.ijariit.com/manuscripts/v7i4/V7I4-1139.pdf Abstract Image processing technology is used in

Adithya M 2 Jun 28, 2022
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"

MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp

Van 7 Dec 23, 2022
Model parallel transformers in Jax and Haiku

Mesh Transformer Jax A haiku library using the new(ly documented) xmap operator in Jax for model parallelism of transformers. See enwik8_example.py fo

Ben Wang 4.8k Jan 01, 2023
Cross-modal Retrieval using Transformer Encoder Reasoning Networks (TERN). With use of Metric Learning and FAISS for fast similarity search on GPU

Cross-modal Retrieval using Transformer Encoder Reasoning Networks This project reimplements the idea from "Transformer Reasoning Network for Image-Te

Minh-Khoi Pham 5 Nov 05, 2022
Accelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.

Optimum Transformers Accelerated NLP pipelines for fast inference 🚀 on CPU and GPU. Built with 🤗 Transformers, Optimum and ONNX runtime. Installatio

Aleksey Korshuk 115 Dec 16, 2022
Faster Convex Lipschitz Regression

Faster Convex Lipschitz Regression This reepository provides a python implementation of our Faster Convex Lipschitz Regression algorithm with GPU and

Ali Siahkamari 0 Nov 19, 2021
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022
A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild"

VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video

45 Nov 29, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022