Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

Overview

NIRPS-ETC

Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

February 2022 - Before NIRPS on sky

Original NIRPS ETC code by Bruno L. Canto Martins 2018-2019

Additional edits by Nolan Grieves (University of Geneva) 2020-2022

Overview

  • The NIRPS ETC uses spectra from the NASA Infrared Telescope Facility (IRTF) as SEDs to get estimated flux values for different spectral types: http://irtfweb.ifa.hawaii.edu/~spex/IRTF_Spectral_Library/
  • The ETC calculates efficiency at different wavelengths using seeing, atmospheric efficiency from TAPAS (http://cds-espri.ipsl.fr/tapas/), and the measured global efficiency of the instrument
  • The signal to noise ratio (SNR) at each pixel or bin is calculated from the fiber diameter, sampling, readout noise, resolution, efficiency, and flux in the pixel or bin from the IRTF template (flux=(10.**(0.4*(Ho-H)))*flux_st)
  • RV precisions are calculated using, dRV=c/(Q*sqrt(Ne-)), equation 12 of Bouchy et al. (2001: https://ui.adsabs.harvard.edu/abs/2001A%26A...374..733B/abstract). The quality factors Q for spectra are calculated with ENIRIC from Phoenix simulated spectra or from spectral templates from the Spirou spectrograph
    • -> see: NIRPS-ETC/intermediate_preparation/update_RV_estimates/README_update_RV_estimates

Use

$ python NIRPS_ETC.py

  • change observing options within the code at the top
    • Observation Mode (HA/HE)
    • Seeing, in arcsec (range 0.7-1.2)
    • Airmass (range 1.0-2.0)
    • Object magnitude (H band)
    • Exposure time (in sec)
    • Spectral type (F0V/F5V/G0V/G5V/G8V/K0V/K3V/K7V/M0V/M1V/M2V/M3V/M4V/M5V/M6V/M7V/M8V/M9V/L1V/L2V/L3V/L4V/L5V/L6V/L8V/T2V)
    • bandpass ('CFHT' or 'Eniric') #YJH bandpasses that will affect the range of the spectra used to calculate RV precision
  • outputs mean SNR, in YJH, and each order, and RV precisisons for certain spectral types

OR use script version:

$ python NIRPS_ETC_script.py

  • change inputs for each target in a space separated text file with columns:
    • target st obs_mode seeing airmass H t_exp bandpass
  • change input and output text files within code to desired option
  • outputs to file the mean SNR, YJH SNRs, and RV precisions

Contents

  • inputs/
    • NIRPS_STAR_templates.txt
      • SEDs from IRTF (update with intermediate_preparation/update_effs/update_effs.py)
    • NIRPS_effs.txt
      • global efficiency of instrument (update with intermediate_preparation/update_effs/update_effs.py)
    • NIRPS_tapas.txt
      • atmospheric efficiency from TAPAS (update with intermediate_preparation/update_effs/update_effs.py)
    • NIRPS_wave_range.txt
      • wavelength range of echelle orders (update with intermediate_preparation/update_effs/update_effs.py)
    • phoenix_Q_conversions_CFHT-bandpass.txt
      • Q factor conversions for different resolutions in CFHT defined YJH bandpasses (update with intermediate_preparation/update_RV_estimates/phoenix_qfactor_resolution_conversion.py)
    • phoenix_Q_conversions_eniric-bandpass.txt
      • Q factor conversions for different resolutions in Eniric defined YJH bandpasses (update with intermediate_preparation/update_RV_estimates/phoenix_qfactor_resolution_conversion.py)
    • phoenix_eniric_Qfactors_CFHT-bandpass.csv
      • Q factors from Eniric in CFHT defined YJH bandpasses (update with eniric using command in intermediate_preparation/update_RV_estimates/README_update_RV_estimates)
    • phoenix_eniric_Qfactors_eniric-bandpass.csv
      • Q factors from Eniric in Eniric defined YJH bandpasses (update with eniric using command in intermediate_preparation/update_RV_estimates/README_update_RV_estimates)
    • spirou_fit_Qvalues_CFHT-bandpass.txt
      • Q factors from Spirou templates in CFHT defined YJH bandpasses (update with intermediate_preparation/update_RV_estimates/fit_spirou_qfactors.py)
    • spirou_fit_Qvalues_eniric-bandpass.txt.
      • Q factors from Spirou templates in Eniric defined YJH bandpasses (update with intermediate_preparation/update_RV_estimates/fit_spirou_qfactors.py)
  • intermediate_preparation/
    • ETC_v3.0_CantoMartins/
      • original ETC by Bruno Canto Martins
    • add_stellar_templates/
      • add and update stellar templates
    • update_RV_estimates/
      • update RV estimates and Q values
    • update_effs/
      • update efficiency files and resample wavelength grid for tapas, effs, and star_templates
  • outputs/
    • outputs SNR for each order and wavelength vs SNR plot from NIRPS_ETC.py
  • NIRPS_ETC.py
    • main ETC code for a single star
  • NIRPS_ETC_script.py
    • script that runs ETC for stars in etc_targets_input.txt and outputs to etc_targets_output.txt
  • etc_targets_input.txt
    • example input file for NIRPS_ETC_script.py
  • etc_targets_output.txt
    • example ouput file for NIRPS_ETC_script.py
  • nirps_etc_lib.py
    • definitions for fucntions in ETC code
Owner
Nolan Grieves
Postdoctoral Research Scientist [email protected]
Nolan Grieves
Laser device for neutralizing - mosquitoes, weeds and pests

Laser device for neutralizing - mosquitoes, weeds and pests (in progress) Here I will post information for creating a laser device. A warning!! How It

Ildaron 1k Jan 02, 2023
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

81 Dec 15, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
Implementation of the paper Recurrent Glimpse-based Decoder for Detection with Transformer.

REGO-Deformable DETR By Zhe Chen, Jing Zhang, and Dacheng Tao. This repository is the implementation of the paper Recurrent Glimpse-based Decoder for

Zhe Chen 33 Nov 30, 2022
Extremely easy multi instancing software for minecraft speedrunning.

Easy Multi Extremely easy multi/single instancing software for minecraft speedrunning. A couple of goals of this project: Setup multi in minutes No fi

Duncan 8 Jul 16, 2022
Framework for evaluating ANNS algorithms on billion scale datasets.

Billion-Scale ANN http://big-ann-benchmarks.com/ Install The only prerequisite is Python (tested with 3.6) and Docker. Works with newer versions of Py

Harsha Vardhan Simhadri 132 Dec 24, 2022
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data

VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De

6 Dec 15, 2022
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

GarField 88 Nov 07, 2022
A motion detection system with RaspberryPi, OpenCV, Python

Human Detection System using Raspberry Pi Functionality Activates a relay on detecting motion. You may need following components to get the expected R

Omal Perera 55 Dec 04, 2022
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Kaiqiang Song 4 Apr 03, 2022
Accelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.

Optimum Transformers Accelerated NLP pipelines for fast inference 🚀 on CPU and GPU. Built with 🤗 Transformers, Optimum and ONNX runtime. Installatio

Aleksey Korshuk 115 Dec 16, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023