RL agent to play μRTS with Stable-Baselines3

Overview

Gym-μRTS with Stable-Baselines3/PyTorch

This repo contains an attempt to reproduce Gridnet PPO with invalid action masking algorithm to play μRTS using Stable-Baselines3 library. Apart from reproducibility, this might open access to a diverse set of well tested algorithms, and toolings for training, evaluations, and more.

Original paper: Gym-μRTS: Toward Affordable Deep Reinforcement Learning Research in Real-time Strategy Games.

Original code: gym-microrts-paper.

demo.gif

Install

Prerequisites:

  • Python 3.7+
  • Java 8.0+
  • FFmpeg (for video capturing)
git clone https://github.com/kachayev/gym-microrts-paper-sb3
cd gym-microrts-paper-sb3
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt

Note that I use newer version of gym-microrts compared to the one that was originally used for the paper.

Training

To traing an agent:

$ python ppo_gridnet_diverse_encode_decode_sb3.py

If everything is setup correctly, you'll see typicall SB3 verbose logging:

Using cpu device
---------------------------------
| rollout/           |          |
|    ep_len_mean     | 2e+03    |
|    ep_rew_mean     | 0.0      |
| time/              |          |
|    fps             | 179      |
|    iterations      | 1        |
|    time_elapsed    | 11       |
|    total_timesteps | 2048     |
---------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 1.72e+03     |
|    ep_rew_mean          | -5.0         |
| time/                   |              |
|    fps                  | 55           |
|    iterations           | 2            |
|    time_elapsed         | 74           |
|    total_timesteps      | 4096         |
| train/                  |              |
|    approx_kl            | 0.0056759235 |
|    clip_fraction        | 0.0861       |
|    clip_range           | 0.2          |
|    entropy_loss         | -5.65        |
|    explained_variance   | 0.412        |
|    learning_rate        | 0.0003       |
|    loss                 | -0.024       |
|    n_updates            | 10           |
|    policy_gradient_loss | -0.00451     |
|    value_loss           | 0.00413      |
------------------------------------------

As soon as correctness of the implementation is verified, I will provide details on how to use RL Baselines3 Zoo for training and evaluations.

Implementational Caveats

A few notes / pain points regarding the implementation of the alrogithms, and the process of integrating it with stable-baselines3:

  • Gym does not ship a space for "array of multidiscrete" use case (let's be honest, it's not very common). But it gives an option for defining your space when necessary. A new space, when defined, is not easy to integrate into SB3. In a few different places SB3 raises NotImplementedError facing unknown space (example 1, example 2).
  • Seems like switching to fully rolled out MutliDiscrete space definition has a significant performance penalty. Still investigating if this can be improved.
  • Invalid masking is implemented by passing masks into observations from the wrapper (the observation space is replaced with gym.spaces.Dict to hold both observations and masks). By doing it this way, masks are now available for policy, and fit rollout buffer layout. Masking is implemented by setting logits into -inf (or to a rather small number).

Look for xxx(hack) comments in the code for more details.

Owner
Oleksii Kachaiev
Principal Software Engineer @ Riot, League of Legends Data/ML/AI. Research interests: human-level intelligence for RTS games and complex open world simulations.
Oleksii Kachaiev
PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)

Value Iteration Networks in PyTorch Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. Value Iteration Networks. Neural Information Processing

LEI TAI 75 Nov 24, 2022
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Do pedestrians pay attention? Eye contact detection for autonomous driving Official implementation of the paper Do pedestrians pay attention? Eye cont

VITA lab at EPFL 26 Nov 02, 2022
A framework for multi-step probabilistic time-series/demand forecasting models

JointDemandForecasting.py A framework for multi-step probabilistic time-series/demand forecasting models File stucture JointDemandForecasting contains

Stanford Intelligent Systems Laboratory 3 Sep 28, 2022
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
An Official Repo of CVPR '20 "MSeg: A Composite Dataset for Multi-Domain Segmentation"

This is the code for the paper: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation (CVPR 2020, Official Repo) [CVPR PDF] [Journal PDF] J

226 Nov 05, 2022
The official codes for the ICCV2021 Oral presentation "Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework"

P2PNet (ICCV2021 Oral Presentation) This repository contains codes for the official implementation in PyTorch of P2PNet as described in Rethinking Cou

Tencent YouTu Research 208 Dec 26, 2022
Video Frame Interpolation with Transformer (CVPR2022)

VFIformer Official PyTorch implementation of our CVPR2022 paper Video Frame Interpolation with Transformer Dependencies python = 3.8 pytorch = 1.8.0

DV Lab 63 Dec 16, 2022
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
Erpnext app for make employee salary on payroll entry based on one or more project with percentage for all project equal 100 %

Project Payroll this app for make payroll for employee based on projects like project on 30 % and project 2 70 % as account dimension it makes genral

Ibrahim Morghim 8 Jan 02, 2023
Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
Corruption Invariant Learning for Re-identification

Corruption Invariant Learning for Re-identification The official repository for Benchmarks for Corruption Invariant Person Re-identification (NeurIPS

Minghui Chen 73 Dec 08, 2022
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
A library for implementing Decentralized Graph Neural Network algorithms.

decentralized-gnn A package for implementing and simulating decentralized Graph Neural Network algorithms for classification of peer-to-peer nodes. De

Multimedia Knowledge and Social Analytics Lab 5 Nov 07, 2022
基于Paddle框架的fcanet复现

fcanet-Paddle 基于Paddle框架的fcanet复现 fcanet 本项目基于paddlepaddle框架复现fcanet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: frazerlin-fcanet 数据准备 本项目已挂

QuanHao Guo 7 Mar 07, 2022