Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

Overview

TailCalibX : Feature Generation for Long-tail Classification

by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi

[arXiv] [Code] [pip Package] [Video] TailCalibX methodology

Table of contents

๐Ÿฃ Easy Usage (Recommended way to use our method)

โš  Caution: TailCalibX is just TailCalib employed multiple times. Specifically, we generate a set of features once every epoch and use them to train the classifier. In order to mimic that, three things must be done at every epoch in the following order:

  1. Collect all the features from your dataloader.
  2. Use the tailcalib package to make the features balanced by generating samples.
  3. Train the classifier.
  4. Repeat.

๐Ÿ’ป Installation

Use the package manager pip to install tailcalib.

pip install tailcalib

๐Ÿ‘จโ€๐Ÿ’ป Example Code

Check the instruction here for a much more detailed python package information.

# Import
from tailcalib import tailcalib

# Initialize
a = tailcalib(base_engine="numpy")   # Options: "numpy", "pytorch"

# Imbalanced random fake data
import numpy as np
X = np.random.rand(200,100)
y = np.random.randint(0,10, (200,))

# Balancing the data using "tailcalib"
feat, lab, gen = a.generate(X=X, y=y)

# Output comparison
print(f"Before: {np.unique(y, return_counts=True)}")
print(f"After: {np.unique(lab, return_counts=True)}")

๐Ÿงช Advanced Usage

โœ” Things to do before you run the code from this repo

  • Change the data_root for your dataset in main.py.
  • If you are using wandb logging (Weights & Biases), make sure to change the wandb.init in main.py accordingly.

๐Ÿ“€ How to use?

  • For just the methods proposed in this paper :
    • For CIFAR100-LT: run_TailCalibX_CIFAR100-LT.sh
    • For mini-ImageNet-LT : run_TailCalibX_mini-ImageNet-LT.sh
  • For all the results show in the paper :
    • For CIFAR100-LT: run_all_CIFAR100-LT.sh
    • For mini-ImageNet-LT : run_all_mini-ImageNet-LT.sh

๐Ÿ“š How to create the mini-ImageNet-LT dataset?

Check Notebooks/Create_mini-ImageNet-LT.ipynb for the script that generates the mini-ImageNet-LT dataset with varying imbalance ratios and train-test-val splits.

โš™ Arguments

  • --seed : Select seed for fixing it.

    • Default : 1
  • --gpu : Select the GPUs to be used.

    • Default : "0,1,2,3"
  • --experiment: Experiment number (Check 'libs/utils/experiment_maker.py').

    • Default : 0.1
  • --dataset : Dataset number.

    • Choices : 0 - CIFAR100, 1 - mini-imagenet
    • Default : 0
  • --imbalance : Select Imbalance factor.

    • Choices : 0: 1, 1: 100, 2: 50, 3: 10
    • Default : 1
  • --type_of_val : Choose which dataset split to use.

    • Choices: "vt": val_from_test, "vtr": val_from_train, "vit": val_is_test
    • Default : "vit"
  • --cv1 to --cv9 : Custom variable to use in experiments - purpose changes according to the experiment.

    • Default : "1"
  • --train : Run training sequence

    • Default : False
  • --generate : Run generation sequence

    • Default : False
  • --retraining : Run retraining sequence

    • Default : False
  • --resume : Will resume from the 'latest_model_checkpoint.pth' and wandb if applicable.

    • Default : False
  • --save_features : Collect feature representations.

    • Default : False
  • --save_features_phase : Dataset split of representations to collect.

    • Choices : "train", "val", "test"
    • Default : "train"
  • --config : If you have a yaml file with appropriate config, provide the path here. Will override the 'experiment_maker'.

    • Default : None

๐Ÿ‹๏ธโ€โ™‚๏ธ Trained weights

Experiment CIFAR100-LT (ResNet32, seed 1, Imb 100) mini-ImageNet-LT (ResNeXt50)
TailCalib Git-LFS Git-LFS
TailCalibX Git-LFS Git-LFS
CBD + TailCalibX Git-LFS Git-LFS

๐Ÿช€ Results on a Toy Dataset

Open In Colab

The higher the Imb ratio, the more imbalanced the dataset is. Imb ratio = maximum_sample_count / minimum_sample_count.

Check this notebook to play with the toy example from which the plot below was generated.

๐ŸŒด Directory Tree

TailCalibX
โ”œโ”€โ”€ libs
โ”‚   โ”œโ”€โ”€ core
โ”‚   โ”‚   โ”œโ”€โ”€ ce.py
โ”‚   โ”‚   โ”œโ”€โ”€ core_base.py
โ”‚   โ”‚   โ”œโ”€โ”€ ecbd.py
โ”‚   โ”‚   โ”œโ”€โ”€ modals.py
โ”‚   โ”‚   โ”œโ”€โ”€ TailCalib.py
โ”‚   โ”‚   โ””โ”€โ”€ TailCalibX.py
โ”‚   โ”œโ”€โ”€ data
โ”‚   โ”‚   โ”œโ”€โ”€ dataloader.py
โ”‚   โ”‚   โ”œโ”€โ”€ ImbalanceCIFAR.py
โ”‚   โ”‚   โ””โ”€โ”€ mini-imagenet
โ”‚   โ”‚       โ”œโ”€โ”€ 0.01_test.txt
โ”‚   โ”‚       โ”œโ”€โ”€ 0.01_train.txt
โ”‚   โ”‚       โ””โ”€โ”€ 0.01_val.txt
โ”‚   โ”œโ”€โ”€ loss
โ”‚   โ”‚   โ”œโ”€โ”€ CosineDistill.py
โ”‚   โ”‚   โ””โ”€โ”€ SoftmaxLoss.py
โ”‚   โ”œโ”€โ”€ models
โ”‚   โ”‚   โ”œโ”€โ”€ CosineDotProductClassifier.py
โ”‚   โ”‚   โ”œโ”€โ”€ DotProductClassifier.py
โ”‚   โ”‚   โ”œโ”€โ”€ ecbd_converter.py
โ”‚   โ”‚   โ”œโ”€โ”€ ResNet32Feature.py
โ”‚   โ”‚   โ”œโ”€โ”€ ResNext50Feature.py
โ”‚   โ”‚   โ””โ”€โ”€ ResNextFeature.py
โ”‚   โ”œโ”€โ”€ samplers
โ”‚   โ”‚   โ””โ”€โ”€ ClassAwareSampler.py
โ”‚   โ””โ”€โ”€ utils
โ”‚       โ”œโ”€โ”€ Default_config.yaml
โ”‚       โ”œโ”€โ”€ experiments_maker.py
โ”‚       โ”œโ”€โ”€ globals.py
โ”‚       โ”œโ”€โ”€ logger.py
โ”‚       โ””โ”€โ”€ utils.py
โ”œโ”€โ”€ LICENSE
โ”œโ”€โ”€ main.py
โ”œโ”€โ”€ Notebooks
โ”‚   โ”œโ”€โ”€ Create_mini-ImageNet-LT.ipynb
โ”‚   โ””โ”€โ”€ toy_example.ipynb
โ”œโ”€โ”€ readme_assets
โ”‚   โ”œโ”€โ”€ method.svg
โ”‚   โ””โ”€โ”€ toy_example_output.svg
โ”œโ”€โ”€ README.md
โ”œโ”€โ”€ run_all_CIFAR100-LT.sh
โ”œโ”€โ”€ run_all_mini-ImageNet-LT.sh
โ”œโ”€โ”€ run_TailCalibX_CIFAR100-LT.sh
โ””โ”€โ”€ run_TailCalibX_mini-imagenet-LT.sh

Ignored tailcalib_pip as it is for the tailcalib pip package.

๐Ÿ“ƒ Citation

@inproceedings{rahul2021tailcalibX,
    title   = {{Feature Generation for Long-tail Classification}},
    author  = {Rahul Vigneswaran and Marc T. Law and Vineeth N. Balasubramanian and Makarand Tapaswi},
    booktitle = {ICVGIP},
    year = {2021}
}

๐Ÿ‘ Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

โค About me

Rahul Vigneswaran

โœจ Extras

๐Ÿ Long-tail buzz : If you are interested in deep learning research which involves long-tailed / imbalanced dataset, take a look at Long-tail buzz to learn about the recent trending papers in this field.

๐Ÿ“ License

MIT

Owner
Rahul Vigneswaran
Rahul Vigneswaran
This repo is customed for VisDrone.

Object Detection for VisDrone(ๆ— ไบบๆœบ่ˆชๆ‹ๅ›พๅƒ็›ฎๆ ‡ๆฃ€ๆต‹) My environment 1ใ€Windows10 (Linux available) 2ใ€tensorflow = 1.12.0 3ใ€python3.6 (anaconda) 4ใ€cv2 5ใ€ensemble

53 Jul 17, 2022
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape

Metashape-Utils This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape, given a set of 2D coordinates

INSCRIBE 4 Nov 07, 2022
Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung

Vending_Machine_(Mesin_Penjual_Minuman) Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung Raw Sketch untuk Essay Ringkasan P

QueenLy 1 Nov 08, 2021
Generating Images with Recurrent Adversarial Networks

Generating Images with Recurrent Adversarial Networks Python (Theano) implementation of Generating Images with Recurrent Adversarial Networks code pro

Daniel Jiwoong Im 121 Sep 08, 2022
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling

bulbea "Deep Learning based Python Library for Stock Market Prediction and Modelling." Table of Contents Installation Usage Documentation Dependencies

Achilles Rasquinha 1.8k Jan 05, 2023
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023
PyTorch implementation of MuseMorphose, a Transformer-based model for music style transfer.

MuseMorphose This repository contains the official implementation of the following paper: Shih-Lun Wu, Yi-Hsuan Yang MuseMorphose: Full-Song and Fine-

Yating Music, Taiwan AI Labs 142 Jan 08, 2023
Dictionary Learning with Uniform Sparse Representations for Anomaly Detection

Dictionary Learning with Uniform Sparse Representations for Anomaly Detection Implementation of the Uniform DL Representation for AD algorithm describ

Paul Irofti 1 Nov 23, 2022
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr

Image Processing Group - BarcelonaTECH - UPC 347 Nov 22, 2022
Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Kim Seonghyeon 2.2k Jan 01, 2023
MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

MemStream Implementation of MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift . Siddharth Bhatia, Arjit Jain, Shivi

Stream-AD 61 Dec 02, 2022
Source code of "Hold me tight! Influence of discriminative features on deep network boundaries"

Hold me tight! Influence of discriminative features on deep network boundaries This is the source code to reproduce the experiments of the NeurIPS 202

EPFL LTS4 19 Dec 10, 2021
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
[ICRA2021] Reconstructing Interactive 3D Scene by Panoptic Mapping and CAD Model Alignment

Interactive Scene Reconstruction Project Page | Paper This repository contains the implementation of our ICRA2021 paper Reconstructing Interactive 3D

97 Dec 28, 2022
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs ยป Report Bug ยท Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
Modular Gaussian Processes

Modular Gaussian Processes for Transfer Learning ๐Ÿงฉ Introduction This repository contains the implementation of our paper Modular Gaussian Processes f

Pablo Moreno-Muรฑoz 10 Mar 15, 2022
CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices.

CenterFace Introduce CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices. Recent Update 2019.09.

StarClouds 1.2k Dec 21, 2022
FastyAPI is a Stack boilerplate optimised for heavy loads.

FastyAPI A FastAPI based Stack boilerplate for heavy loads. Explore the docs ยป View Demo ยท Report Bug ยท Request Feature Table of Contents About The Pr

Ali Chaayb 47 Dec 27, 2022