Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"

Overview

The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint

Louay Hazami   ·   Rayhane Mama   ·   Ragavan Thurairatnam


MIT license PWC PWC PWC PWC PWC PWC PWC PWC

Efficient-VDVAE is a memory and compute efficient very deep hierarchical VAE. It converges faster and is more stable than current hierarchical VAE models. It also achieves SOTA likelihood-based performance on several image datasets.

Pre-trained model checkpoints

We provide checkpoints of pre-trained models on MNIST, CIFAR-10, Imagenet 32x32, Imagenet 64x64, CelebA 64x64, CelebAHQ 256x256 (5-bits and 8-bits), FFHQ 256x256 (5-bits and 8bits), CelebAHQ 1024x1024 and FFHQ 1024x1024 in the links in the table below. All provided models are the ones trained for table 4 of the paper.

Dataset Pytorch JAX Negative ELBO
Logs Checkpoints Logs Checkpoints
MNIST link link link link 79.09 nats
CIFAR-10 Queued Queued link link 2.87 bits/dim
Imagenet 32x32 link link link link 3.58 bits/dim
Imagenet 64x64 link link link link 3.30 bits/dim
CelebA 64x64 link link link link 1.83 bits/dim
CelebAHQ 256x256 (5-bits) link link link link 0.51 bits/dim
CelebAHQ 256x256 (8-bits) link link link link 1.35 bits/dim
FFHQ 256x256 (5-bits) link link link link 0.53 bits/dim
FFHQ 256x256 (8-bits) link link link link 2.17 bits/dim
CelebAHQ 1024x1024 link link link link 1.01 bits/dim
FFHQ 1024x1024 link link link link 2.30 bits/dim

Notes:

  • Downloading from the "Checkpoints" link will download the minimal required files to resume training/do inference. The minimal files are the model checkpoint file and the saved hyper-parameters of the run (explained further below).
  • Downloading from the "Logs" link will download additional pre-training logs such as tensorboard files or saved images from training. "Logs" also holds the saved hyper-parameters of the run.
  • Downloaded "Logs" and/or "Checkpoints" should be always unzipped in their implementation folder (efficient_vdvae_torch for Pytorch checkpoints and efficient_vdvae_jax for JAX checkpoints).
  • Some of the model checkpoints are missing in either Pytorch or JAX for the moment. We will update them soon.

Pre-requisites

To run this codebase, you need:

  • Machine that runs a linux based OS (tested on Ubuntu 20.04 (LTS))
  • GPUs (preferably more than 16GB)
  • Docker
  • Python 3.7 or higher
  • CUDA 11.1 or higher (can be installed from here)

We recommend running all the code below inside a Linux screen or any other terminal multiplexer, since some commands can take hours/days to finish and you don't want them to die when you close your terminal.

Note:

  • If you're planning on running the JAX implementation, the installed JAX must use exactly the same CUDA and Cudnn versions installed. Our default Dockerfile assumes the code will run with CUDA 11.4 or newer and should be changed otherwise. For more details, refer to JAX installation.

Installation

To create the docker image used in both the Pytorch and JAX implementations:

cd build  
docker build -t efficient_vdvae_image .  

Note:

  • If using JAX library on ampere architecture GPUs, it's possible to face a random GPU hanging problem when training on multiple GPUs (issue). In that case, we provide an alternative docker image with an older version of JAX to bypass the issue until a solution is found.

All code executions should be done within a docker container. To start the docker container, we provide a utility script:

sh docker_run.sh  # Starts the container and attaches terminal
cd /workspace/Efficient-VDVAE  # Inside docker container

Setup datasets

All datasets can be automatically downloaded and pre-processed from the convenience script we provide:

cd data_scripts
sh download_and_preprocess.sh <dataset_name>

Notes:

  • <dataset_name> can be one of (imagenet32, imagenet64, celeba, celebahq, ffhq). MNIST and CIFAR-10 datasets will get automatically downloaded later when training the model, and they do no require any dataset setup.
  • For the celeba dataset, a manual download of img_align_celeba.zip and list_eval_partition.txt files is necessary. Both files should be placed under <project_path>/dataset_dumps/.
  • img_align_celeba.zip download link.
  • list_eval_partition.txt download link.

Setting the hyper-parameters

In this repository, we use hparams library (already included in the Dockerfile) for hyper-parameter management:

  • Specify all run parameters (number of GPUs, model parameters, etc) in one .cfg file
  • Hparams evaluates any expression used as "value" in the .cfg file. "value" can be any basic python object (floats, strings, lists, etc) or any python basic expression (1/2, max(3, 7), etc.) as long as the evaluation does not require any library importations or does not rely on other values from the .cfg.
  • Hparams saves the configuration of previous runs for reproducibility, resuming training, etc.
  • All hparams are saved by name, and re-using the same name will recall the old run instead of making a new one.
  • The .cfg file is split into sections for readability, and all parameters in the file are accessible as class attributes in the codebase for convenience.
  • The HParams object keeps a global state throughout all the scripts in the code.

We highly recommend having a deeper look into how this library works by reading the hparams library documentation, the parameters description and figures 4 and 5 in the paper before trying to run Efficient-VDVAE.

We have heavily tested the robustness and stability of our approach, so changing the model/optimization hyper-parameters for memory load reduction should not introduce any drastic instabilities as to make the model untrainable. That is of course as long as the changes don't negate the important stability points we describe in the paper.

Training the Efficient-VDVAE

To run Efficient-VDVAE in Torch:

cd efficient_vdvae_torch  
# Set the hyper-parameters in "hparams.cfg" file  
# Set "NUM_GPUS_PER_NODE" in "train.sh" file  
sh train.sh  

To run Efficient-VDVAE in JAX:

cd efficient_vdvae_jax  
# Set the hyper-parameters in "hparams.cfg" file  
python train.py  

If you want to run the model with less GPUs than available on the hardware, for example 2 GPUs out of 8:

CUDA_VISIBLE_DEVICES=0,1 sh train.sh  # For torch  
CUDA_VISIBLE_DEVICES=0,1 python train.py  # For JAX  

Models automatically create checkpoints during training. To resume a model from its last checkpoint, set its <run.name> in hparams.cfg file and re-run the same training commands.

Since training commands will save the hparams of the defined run in the .cfg file. If trying to restart a pre-existing run (by re-using its name in hparams.cfg), we provide a convenience script for resetting saved runs:

cd efficient_vdvae_torch  # or cd efficient_vdvae_jax  
sh reset.sh <run.name>  # <run.name> is the first field in hparams.cfg  

Note:

  • To make things easier for new users, we provide example hparams.cfg files that can be used under the egs folder. Detailed description of the role of each parameter is also inside hparams.cfg.
  • Hparams in egs are to be viewed only as guiding examples, they are not meant to be exactly similar to pre -trained checkpoints or experiments done in the paper.
  • While the example hparams under the naming convention ..._baseline.cfg are not exactly the hparams of C2 models in the paper (pre-trained checkpoints), they are easier to design models that achieve the same performance and can be treated as equivalents to C2 models.

Monitoring the training process

While writing this codebase, we put extra emphasis on verbosity and logging. Aside from the printed logs on terminal (during training), you can monitor the training progress and keep track of useful metrics using Tensorboard:

# While outside efficient_vdvae_torch or efficient_vdvae_jax  
# Run outside the docker container
tensorboard --logdir . --port <port_id> --reload_multifile True  

In the browser, navigate to localhost:<port_id> to visualize all saved metrics.

If Tensorboard is not installed (outside the docker container):

pip install --upgrade tensorboard

Inference with the Efficient-VDVAE

Efficient-VDVAE support multiple inference modes:

  • "reconstruction": Encodes then decodes the test set images and computes test NLL and SSIM.
  • "generation": Generates random images from the prior distribution. Randomness is controlled by the run.seed parameter.
  • "div_stats": Pre-computes the average KL divergence stats used to determine turned-off variates (refer to section 7 of the paper). Note: This mode needs to be run before "encoding" mode and before trying to do masked "reconstruction" (Refer to hparams.cfg for a detailed description).
  • "encoding": Extracts the latent distribution from the inference model, pruned to the quantile defined by synthesis.variates_masks_quantile parameter. This latent distribution is usable in downstream tasks.

To run the inference:

cd efficient_vdvae_torch  # or cd efficient_vdvae_jax  
# Set the inference mode in "logs-<run.name>/hparams-<run.name>.cfg"  
# Set the same <run.name> in "hparams.cfg"  
python synthesize.py  

Notes:

  • Since training a model with a name <run.name> will save that configuration under logs-<run.name>/hparams-<run.name>.cfg for reproducibility and error reduction. Any changes that one wants to make during inference time need to be applied on the saved hparams file (logs-<run.name>/hparams-<run.name>.cfg) instead of the main file hparams.cfg.
  • The torch implementation currently doesn't support multi-GPU inference. The JAX implementation does.

Potential TODOs

  • Make data loaders Out-Of-Core (OOC) in Pytorch
  • Make data loaders Out-Of-Core (OOC) in JAX
  • Update pre-trained model checkpoints
  • Add Fréchet-Inception Distance (FID) and Inception Score (IS) as measures for sample quality performance.
  • Improve the format of the encoded dataset used in downstream tasks (output of encoding mode, if there is a need)
  • Write a decoding mode API (if needed).

Bibtex

If you happen to use this codebase, please cite our paper:

@article{hazami2022efficient,
  title={Efficient-VDVAE: Less is more},
  author={Hazami, Louay and Mama, Rayhane and Thurairatnam, Ragavan},
  journal={arXiv preprint arXiv:2203.13751},
  year={2022}
}
Owner
Rayhane Mama
- If it seems impossible, then it's worth doing.
Rayhane Mama
Person Re-identification

Person Re-identification Final project of Computer Vision Table of content Person Re-identification Table of content Students: Proposed method Dataset

Nguyễn Hoàng Quân 4 Jun 17, 2021
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.

Poisson Image Editing - A Parallel Implementation Jiayi Weng (jiayiwen), Zixu Chen (zixuc) Poisson Image Editing is a technique that can fuse two imag

Jiayi Weng 110 Dec 27, 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy achievi

THUDM 540 Dec 30, 2022
A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations

jaxdf - JAX-based Discretization Framework Overview | Example | Installation | Documentation ⚠️ This library is still in development. Breaking changes

UCL Biomedical Ultrasound Group 65 Dec 23, 2022
Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"

LQVAE-separation Code for "Unsupervised Source Separation via Bayesian inference in the latent domain" Paper Samples GT Compressed Separated Drums GT

Michele Mancusi 30 Oct 25, 2022
UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems

[ICLR 2021] "UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems" by Jiayi Shen, Haotao Wang*, Shupeng Gui*, Jianchao Tan, Zhangyang Wang, and Ji Liu

VITA 39 Dec 03, 2022
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
A GPT, made only of MLPs, in Jax

MLP GPT - Jax (wip) A GPT, made only of MLPs, in Jax. The specific MLP to be used are gMLPs with the Spatial Gating Units. Working Pytorch implementat

Phil Wang 53 Sep 27, 2022
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models

Hyperparameter Optimization of Machine Learning Algorithms This code provides a hyper-parameter optimization implementation for machine learning algor

Li Yang 1.1k Dec 19, 2022
A simple, high level, easy-to-use open source Computer Vision library for Python.

ZoomVision : Slicing Aid Detection A simple, high level, easy-to-use open source Computer Vision library for Python. Installation Installing dependenc

Nurettin Sinanoğlu 2 Mar 04, 2022
Semi-supervised Domain Adaptation via Minimax Entropy

Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019) Install pip install -r requirements.txt The code is written for Pytorch 0.4.0, but s

Vision and Learning Group 243 Jan 09, 2023
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability

PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability PCACE is a new algorithm for ranking neurons in a CNN architecture in order

4 Jan 04, 2022
C3d-pytorch - Pytorch porting of C3D network, with Sports1M weights

C3D for pytorch This is a pytorch porting of the network presented in the paper Learning Spatiotemporal Features with 3D Convolutional Networks How to

Davide Abati 311 Jan 06, 2023
CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields

CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields Paper | Supplementary | Video | Poster If you find our code or paper useful, please

26 Nov 29, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
LiDAR R-CNN: An Efficient and Universal 3D Object Detector

LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object

TuSimple 295 Jan 05, 2023
Direct LiDAR Odometry: Fast Localization with Dense Point Clouds

Direct LiDAR Odometry: Fast Localization with Dense Point Clouds DLO is a lightweight and computationally-efficient frontend LiDAR odometry solution w

VECTR at UCLA 369 Dec 30, 2022
GuideDog is an AI/ML-based mobile app designed to assist the lives of the visually impaired, 100% voice-controlled

Guidedog Authors: Kyuhee Jo, Steven Gunarso, Jacky Wang, Raghav Sharma GuideDog is an AI/ML-based mobile app designed to assist the lives of the visua

Kyuhee Jo 5 Nov 24, 2021