Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"

Overview

The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint

Louay Hazami   ·   Rayhane Mama   ·   Ragavan Thurairatnam


MIT license PWC PWC PWC PWC PWC PWC PWC PWC

Efficient-VDVAE is a memory and compute efficient very deep hierarchical VAE. It converges faster and is more stable than current hierarchical VAE models. It also achieves SOTA likelihood-based performance on several image datasets.

Pre-trained model checkpoints

We provide checkpoints of pre-trained models on MNIST, CIFAR-10, Imagenet 32x32, Imagenet 64x64, CelebA 64x64, CelebAHQ 256x256 (5-bits and 8-bits), FFHQ 256x256 (5-bits and 8bits), CelebAHQ 1024x1024 and FFHQ 1024x1024 in the links in the table below. All provided models are the ones trained for table 4 of the paper.

Dataset Pytorch JAX Negative ELBO
Logs Checkpoints Logs Checkpoints
MNIST link link link link 79.09 nats
CIFAR-10 Queued Queued link link 2.87 bits/dim
Imagenet 32x32 link link link link 3.58 bits/dim
Imagenet 64x64 link link link link 3.30 bits/dim
CelebA 64x64 link link link link 1.83 bits/dim
CelebAHQ 256x256 (5-bits) link link link link 0.51 bits/dim
CelebAHQ 256x256 (8-bits) link link link link 1.35 bits/dim
FFHQ 256x256 (5-bits) link link link link 0.53 bits/dim
FFHQ 256x256 (8-bits) link link link link 2.17 bits/dim
CelebAHQ 1024x1024 link link link link 1.01 bits/dim
FFHQ 1024x1024 link link link link 2.30 bits/dim

Notes:

  • Downloading from the "Checkpoints" link will download the minimal required files to resume training/do inference. The minimal files are the model checkpoint file and the saved hyper-parameters of the run (explained further below).
  • Downloading from the "Logs" link will download additional pre-training logs such as tensorboard files or saved images from training. "Logs" also holds the saved hyper-parameters of the run.
  • Downloaded "Logs" and/or "Checkpoints" should be always unzipped in their implementation folder (efficient_vdvae_torch for Pytorch checkpoints and efficient_vdvae_jax for JAX checkpoints).
  • Some of the model checkpoints are missing in either Pytorch or JAX for the moment. We will update them soon.

Pre-requisites

To run this codebase, you need:

  • Machine that runs a linux based OS (tested on Ubuntu 20.04 (LTS))
  • GPUs (preferably more than 16GB)
  • Docker
  • Python 3.7 or higher
  • CUDA 11.1 or higher (can be installed from here)

We recommend running all the code below inside a Linux screen or any other terminal multiplexer, since some commands can take hours/days to finish and you don't want them to die when you close your terminal.

Note:

  • If you're planning on running the JAX implementation, the installed JAX must use exactly the same CUDA and Cudnn versions installed. Our default Dockerfile assumes the code will run with CUDA 11.4 or newer and should be changed otherwise. For more details, refer to JAX installation.

Installation

To create the docker image used in both the Pytorch and JAX implementations:

cd build  
docker build -t efficient_vdvae_image .  

Note:

  • If using JAX library on ampere architecture GPUs, it's possible to face a random GPU hanging problem when training on multiple GPUs (issue). In that case, we provide an alternative docker image with an older version of JAX to bypass the issue until a solution is found.

All code executions should be done within a docker container. To start the docker container, we provide a utility script:

sh docker_run.sh  # Starts the container and attaches terminal
cd /workspace/Efficient-VDVAE  # Inside docker container

Setup datasets

All datasets can be automatically downloaded and pre-processed from the convenience script we provide:

cd data_scripts
sh download_and_preprocess.sh <dataset_name>

Notes:

  • <dataset_name> can be one of (imagenet32, imagenet64, celeba, celebahq, ffhq). MNIST and CIFAR-10 datasets will get automatically downloaded later when training the model, and they do no require any dataset setup.
  • For the celeba dataset, a manual download of img_align_celeba.zip and list_eval_partition.txt files is necessary. Both files should be placed under <project_path>/dataset_dumps/.
  • img_align_celeba.zip download link.
  • list_eval_partition.txt download link.

Setting the hyper-parameters

In this repository, we use hparams library (already included in the Dockerfile) for hyper-parameter management:

  • Specify all run parameters (number of GPUs, model parameters, etc) in one .cfg file
  • Hparams evaluates any expression used as "value" in the .cfg file. "value" can be any basic python object (floats, strings, lists, etc) or any python basic expression (1/2, max(3, 7), etc.) as long as the evaluation does not require any library importations or does not rely on other values from the .cfg.
  • Hparams saves the configuration of previous runs for reproducibility, resuming training, etc.
  • All hparams are saved by name, and re-using the same name will recall the old run instead of making a new one.
  • The .cfg file is split into sections for readability, and all parameters in the file are accessible as class attributes in the codebase for convenience.
  • The HParams object keeps a global state throughout all the scripts in the code.

We highly recommend having a deeper look into how this library works by reading the hparams library documentation, the parameters description and figures 4 and 5 in the paper before trying to run Efficient-VDVAE.

We have heavily tested the robustness and stability of our approach, so changing the model/optimization hyper-parameters for memory load reduction should not introduce any drastic instabilities as to make the model untrainable. That is of course as long as the changes don't negate the important stability points we describe in the paper.

Training the Efficient-VDVAE

To run Efficient-VDVAE in Torch:

cd efficient_vdvae_torch  
# Set the hyper-parameters in "hparams.cfg" file  
# Set "NUM_GPUS_PER_NODE" in "train.sh" file  
sh train.sh  

To run Efficient-VDVAE in JAX:

cd efficient_vdvae_jax  
# Set the hyper-parameters in "hparams.cfg" file  
python train.py  

If you want to run the model with less GPUs than available on the hardware, for example 2 GPUs out of 8:

CUDA_VISIBLE_DEVICES=0,1 sh train.sh  # For torch  
CUDA_VISIBLE_DEVICES=0,1 python train.py  # For JAX  

Models automatically create checkpoints during training. To resume a model from its last checkpoint, set its <run.name> in hparams.cfg file and re-run the same training commands.

Since training commands will save the hparams of the defined run in the .cfg file. If trying to restart a pre-existing run (by re-using its name in hparams.cfg), we provide a convenience script for resetting saved runs:

cd efficient_vdvae_torch  # or cd efficient_vdvae_jax  
sh reset.sh <run.name>  # <run.name> is the first field in hparams.cfg  

Note:

  • To make things easier for new users, we provide example hparams.cfg files that can be used under the egs folder. Detailed description of the role of each parameter is also inside hparams.cfg.
  • Hparams in egs are to be viewed only as guiding examples, they are not meant to be exactly similar to pre -trained checkpoints or experiments done in the paper.
  • While the example hparams under the naming convention ..._baseline.cfg are not exactly the hparams of C2 models in the paper (pre-trained checkpoints), they are easier to design models that achieve the same performance and can be treated as equivalents to C2 models.

Monitoring the training process

While writing this codebase, we put extra emphasis on verbosity and logging. Aside from the printed logs on terminal (during training), you can monitor the training progress and keep track of useful metrics using Tensorboard:

# While outside efficient_vdvae_torch or efficient_vdvae_jax  
# Run outside the docker container
tensorboard --logdir . --port <port_id> --reload_multifile True  

In the browser, navigate to localhost:<port_id> to visualize all saved metrics.

If Tensorboard is not installed (outside the docker container):

pip install --upgrade tensorboard

Inference with the Efficient-VDVAE

Efficient-VDVAE support multiple inference modes:

  • "reconstruction": Encodes then decodes the test set images and computes test NLL and SSIM.
  • "generation": Generates random images from the prior distribution. Randomness is controlled by the run.seed parameter.
  • "div_stats": Pre-computes the average KL divergence stats used to determine turned-off variates (refer to section 7 of the paper). Note: This mode needs to be run before "encoding" mode and before trying to do masked "reconstruction" (Refer to hparams.cfg for a detailed description).
  • "encoding": Extracts the latent distribution from the inference model, pruned to the quantile defined by synthesis.variates_masks_quantile parameter. This latent distribution is usable in downstream tasks.

To run the inference:

cd efficient_vdvae_torch  # or cd efficient_vdvae_jax  
# Set the inference mode in "logs-<run.name>/hparams-<run.name>.cfg"  
# Set the same <run.name> in "hparams.cfg"  
python synthesize.py  

Notes:

  • Since training a model with a name <run.name> will save that configuration under logs-<run.name>/hparams-<run.name>.cfg for reproducibility and error reduction. Any changes that one wants to make during inference time need to be applied on the saved hparams file (logs-<run.name>/hparams-<run.name>.cfg) instead of the main file hparams.cfg.
  • The torch implementation currently doesn't support multi-GPU inference. The JAX implementation does.

Potential TODOs

  • Make data loaders Out-Of-Core (OOC) in Pytorch
  • Make data loaders Out-Of-Core (OOC) in JAX
  • Update pre-trained model checkpoints
  • Add Fréchet-Inception Distance (FID) and Inception Score (IS) as measures for sample quality performance.
  • Improve the format of the encoded dataset used in downstream tasks (output of encoding mode, if there is a need)
  • Write a decoding mode API (if needed).

Bibtex

If you happen to use this codebase, please cite our paper:

@article{hazami2022efficient,
  title={Efficient-VDVAE: Less is more},
  author={Hazami, Louay and Mama, Rayhane and Thurairatnam, Ragavan},
  journal={arXiv preprint arXiv:2203.13751},
  year={2022}
}
Owner
Rayhane Mama
- If it seems impossible, then it's worth doing.
Rayhane Mama
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022
Code repository for Semantic Terrain Classification for Off-Road Autonomous Driving

BEVNet Datasets Datasets should be put inside data/. For example, data/semantic_kitti_4class_100x100. Training BEVNet-S Example: cd experiments bash t

(Brian) JoonHo Lee 24 Dec 12, 2022
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
dualPC.R contains the R code for the main functions.

dualPC.R contains the R code for the main functions. dualPC_sim.R contains an example run with the different PC versions; it calls dualPC_algs.R whic

3 May 30, 2022
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
A Number Recognition algorithm

Paddle-VisualAttention Results_Compared SVHN Dataset Methods Steps GPU Batch Size Learning Rate Patience Decay Step Decay Rate Training Speed (FPS) Ac

1 Nov 12, 2021
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022
Auditing Black-Box Prediction Models for Data Minimization Compliance

Data-Minimization-Auditor An auditing tool for model-instability based data minimization that is introduced in "Auditing Black-Box Prediction Models f

Bashir Rastegarpanah 2 Mar 24, 2022
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning This is the implementation of the paper "Self-Promoted Prototype Refinement

Kai Zhu 78 Dec 02, 2022
Evaluating Cross-lingual Sentence Representations

XNLI: The Cross-Lingual NLI Corpus XNLI is an evaluation corpus for language transfer and cross-lingual sentence classification in 15 languages. New:

Meta Research 395 Dec 19, 2022
A set of Deep Reinforcement Learning Agents implemented in Tensorflow.

Deep Reinforcement Learning Agents This repository contains a collection of reinforcement learning algorithms written in Tensorflow. The ipython noteb

Arthur Juliani 2.2k Jan 01, 2023
a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Arno Barton 1 Oct 29, 2021
Explainable Zero-Shot Topic Extraction

Zero-Shot Topic Extraction with Common-Sense Knowledge Graph This repository contains the code for reproducing the results reported in the paper "Expl

D2K Lab 56 Dec 14, 2022
Filtering variational quantum algorithms for combinatorial optimization

Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently.

1 Feb 09, 2022
an implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 985 Jan 08, 2023
Atif Hassan 103 Dec 14, 2022
The official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang Gong, Yi Ma. "Fully Convolutional Line Parsing." *.

F-Clip — Fully Convolutional Line Parsing This repository contains the official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang

Xili Dai 115 Dec 28, 2022
Forecasting with Gradient Boosted Time Series Decomposition

ThymeBoost ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy fo

131 Jan 08, 2023