Official PyTorch Implementation for "Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes"

Overview

PVDNet: Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes

License CC BY-NC

This repository contains the official PyTorch implementation of the following paper:

Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes
Hyeongseok Son, Junyong Lee, Jonghyeop Lee, Sunghyun Cho, Seungyong Lee, TOG 2021 (presented at SIGGRAPH 2021)

About the Research

Click here

Overall Framework

Our video deblurring framework consists of three modules: a blur-invariant motion estimation network (BIMNet), a pixel volume generator, and a pixel volume-based deblurring network (PVDNet). We first train BIMNet; after it has converged, we combine the two networks with the pixel volume generator. We then fix the parameters of BIMNet and train PVDNet by training the entire network.

Blur-Invariant Motion Estimation Network (BIMNet)

To estimate motion between frames accurately, we adopt LiteFlowNet and train it with a blur-invariant loss so that the trained network can estimate blur-invariant optical flow between frames. We train BIMNet with a blur-invariant loss , which is defined as (refer Eq. 1 in the main paper):

The figure shows a qualitative comparison of different optical flow methods. The results of the other methods contain severely distorted structures due to errors in their optical flow maps. In contrast, the results of BIMNets show much less distortions.

Pixel Volume for Motion Compensation

We propose a novel pixel volume that provides multiple candidates for matching pixels between images. Moreover, a pixel volume provides an additional cue for motion compensation based on the majority.

Our pixel volume approach leads to the performance improvement of video deblurring by utilizing the multiple candidates in a pixel volume in two aspects: 1) in most cases, the majority cue for the correct match would help as the statistics (Sec. 4.4 in the main paper) shows, and 2) in other cases, PVDNet would exploit multiple candidates to estimate the correct match referring to nearby pixels with majority cues.

Getting Started

Prerequisites

Tested environment

Ubuntu18.04 Python 3.8.8 PyTorch 1.8.0 CUDA 10.2

  1. Environment setup

    $ git clone https://github.com/codeslake/PVDNet.git
    $ cd PVDNet
    
    $ conda create -y --name PVDNet python=3.8 && conda activate PVDNet
    # for CUDA10.2
    $ sh install_CUDA10.2.sh
    # for CUDA11.1
    $ sh install_CUDA11.1.sh
  2. Datasets

    • Download and unzip Su et al.'s dataset and Nah et al.'s dataset under [DATASET_ROOT]:

      ├── [DATASET_ROOT]
      │   ├── train_DVD
      │   ├── test_DVD
      │   ├── train_nah
      │   ├── test_nah
      

      Note:

      • [DATASET_ROOT] is currently set to ./datasets/video_deblur. It can be specified by modifying config.data_offset in ./configs/config.py.
  3. Pre-trained models

    • Download and unzip pretrained weights under ./ckpt/:

      ├── ./ckpt
      │   ├── BIMNet.pytorch
      │   ├── PVDNet_DVD.pytorch
      │   ├── PVDNet_nah.pytorch
      │   ├── PVDNet_large_nah.pytorch
      

Testing models of TOG2021

For PSNRs and SSIMs reported in the paper, we use the approach of Koehler et al. following Su et al., that first aligns two images using global translation to represent the ambiguity in the pixel location caused by blur.
Refer here for the evaluation code.

## Table 4 in the main paper (Evaluation on Su etal's dataset)
# Our final model 
CUDA_VISIBLE_DEVICES=0 python run.py --mode PVDNet_DVD --config config_PVDNet --data DVD --ckpt_abs_name ckpt/PVDNet_DVD.pytorch

## Table 5 in the main paper (Evaluation on Nah etal's dataset)
# Our final model 
CUDA_VISIBLE_DEVICES=0 python run.py --mode PVDNet_nah --config config_PVDNet --data nah --ckpt_abs_name ckpt/PVDNet_nah.pytorch

# Larger model
CUDA_VISIBLE_DEVICES=0 python run.py --mode PVDNet_large_nah --config config_PVDNet_large --data nah --ckpt_abs_name ckpt/PVDNet_large_nah.pytorch

Note:

  • Testing results will be saved in [LOG_ROOT]/PVDNet_TOG2021/[mode]/result/quanti_quali/[mode]_[epoch]/[data]/.
  • [LOG_ROOT] is set to ./logs/ by default. Refer here for more details about the logging.
  • options
    • --data: The name of a dataset to evaluate: DVD | nah | random. Default: DVD
      • The data structure can be modified in the function set_eval_path(..) in ./configs/config.py.
      • random is for testing models with any video frames, which should be placed as [DATASET_ROOT]/random/[video_name]/*.[jpg|png].

Wiki

Citation

If you find this code useful, please consider citing:

@artical{Son_2021_TOG,
    author = {Son, Hyeongseok and Lee, Junyong and Lee, Jonghyeop and Cho, Sunghyun and Lee, Seungyong},
    title = {Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes},
    journal = {ACM Transactions on Graphics},
    year = {2021}
}

Contact

Open an issue for any inquiries. You may also have contact with [email protected] or [email protected]

Resources

All material related to our paper is available by following links:

Link
The main paper
arXiv
Supplementary Files
Checkpoint Files
Su et al [2017]'s dataset (reference)
Nah et al. [2017]'s dataset (reference)

License

This software is being made available under the terms in the LICENSE file.

Any exemptions to these terms require a license from the Pohang University of Science and Technology.

About Coupe Project

Project ‘COUPE’ aims to develop software that evaluates and improves the quality of images and videos based on big visual data. To achieve the goal, we extract sharpness, color, composition features from images and develop technologies for restoring and improving by using them. In addition, personalization technology through user reference analysis is under study.

Please check out other Coupe repositories in our Posgraph github organization.

Useful Links

Owner
Junyong Lee
Ph.D candidate at POSTECH
Junyong Lee
Label Hallucination for Few-Shot Classification

Label Hallucination for Few-Shot Classification This repo covers the implementation of the following paper: Label Hallucination for Few-Shot Classific

Yiren Jian 13 Nov 13, 2022
This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Devdreamsolution 2 Dec 04, 2021
TART - A PyTorch implementation for Transition Matrix Representation of Trees with Transposed Convolutions

TART This project is a PyTorch implementation for Transition Matrix Representati

Lee Sael 2 Jan 19, 2022
Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation

UniFuse (RAL+ICRA2021) Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation, arXiv, Demo Preparation I

Alibaba 47 Dec 26, 2022
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021
AlgoVision - A Framework for Differentiable Algorithms and Algorithmic Supervision

NeurIPS 2021 Paper "Learning with Algorithmic Supervision via Continuous Relaxations"

Felix Petersen 76 Jan 01, 2023
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022
Inteligência artificial criada para realizar interação social com idosos.

IA SONIA 4.0 A SONIA foi inspirada no assistente mais famoso do mundo e muito bem conhecido JARVIS. Todo mundo algum dia ja sonhou em ter o seu própri

Vinícius Azevedo 2 Oct 21, 2021
This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021.

Open Rule Induction This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021. Abstract Rule

Xingran Chen 16 Nov 14, 2022
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Udit Arora 19 Oct 28, 2022
Image Deblurring using Generative Adversarial Networks

DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo

Orest Kupyn 2.2k Jan 01, 2023
Make a Turtlebot3 follow a figure 8 trajectory and create a robot arm and make it follow a trajectory

HW2 - ME 495 Overview Part 1: Makes the robot move in a figure 8 shape. The robot starts moving when launched on a real turtlebot3 and can be paused a

Devesh Bhura 0 Oct 21, 2022
Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.

Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t

Geotrend 79 Dec 28, 2022
Replication Code for "Self-Supervised Bug Detection and Repair" NeurIPS 2021

Self-Supervised Bug Detection and Repair This is the reference code to replicate the research in Self-Supervised Bug Detection and Repair in NeurIPS 2

Microsoft 85 Dec 24, 2022
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
Automatically align face images 🙃→🙂. Can also do windowing and warping.

Automatic Face Alignment (AFA) Carl M. Gaspar & Oliver G.B. Garrod You have lots of photos of faces like this: But you want to line up all of the face

Carl Michael Gaspar 15 Dec 12, 2022
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022