Official PyTorch Implementation for "Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes"

Overview

PVDNet: Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes

License CC BY-NC

This repository contains the official PyTorch implementation of the following paper:

Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes
Hyeongseok Son, Junyong Lee, Jonghyeop Lee, Sunghyun Cho, Seungyong Lee, TOG 2021 (presented at SIGGRAPH 2021)

About the Research

Click here

Overall Framework

Our video deblurring framework consists of three modules: a blur-invariant motion estimation network (BIMNet), a pixel volume generator, and a pixel volume-based deblurring network (PVDNet). We first train BIMNet; after it has converged, we combine the two networks with the pixel volume generator. We then fix the parameters of BIMNet and train PVDNet by training the entire network.

Blur-Invariant Motion Estimation Network (BIMNet)

To estimate motion between frames accurately, we adopt LiteFlowNet and train it with a blur-invariant loss so that the trained network can estimate blur-invariant optical flow between frames. We train BIMNet with a blur-invariant loss , which is defined as (refer Eq. 1 in the main paper):

The figure shows a qualitative comparison of different optical flow methods. The results of the other methods contain severely distorted structures due to errors in their optical flow maps. In contrast, the results of BIMNets show much less distortions.

Pixel Volume for Motion Compensation

We propose a novel pixel volume that provides multiple candidates for matching pixels between images. Moreover, a pixel volume provides an additional cue for motion compensation based on the majority.

Our pixel volume approach leads to the performance improvement of video deblurring by utilizing the multiple candidates in a pixel volume in two aspects: 1) in most cases, the majority cue for the correct match would help as the statistics (Sec. 4.4 in the main paper) shows, and 2) in other cases, PVDNet would exploit multiple candidates to estimate the correct match referring to nearby pixels with majority cues.

Getting Started

Prerequisites

Tested environment

Ubuntu18.04 Python 3.8.8 PyTorch 1.8.0 CUDA 10.2

  1. Environment setup

    $ git clone https://github.com/codeslake/PVDNet.git
    $ cd PVDNet
    
    $ conda create -y --name PVDNet python=3.8 && conda activate PVDNet
    # for CUDA10.2
    $ sh install_CUDA10.2.sh
    # for CUDA11.1
    $ sh install_CUDA11.1.sh
  2. Datasets

    • Download and unzip Su et al.'s dataset and Nah et al.'s dataset under [DATASET_ROOT]:

      ├── [DATASET_ROOT]
      │   ├── train_DVD
      │   ├── test_DVD
      │   ├── train_nah
      │   ├── test_nah
      

      Note:

      • [DATASET_ROOT] is currently set to ./datasets/video_deblur. It can be specified by modifying config.data_offset in ./configs/config.py.
  3. Pre-trained models

    • Download and unzip pretrained weights under ./ckpt/:

      ├── ./ckpt
      │   ├── BIMNet.pytorch
      │   ├── PVDNet_DVD.pytorch
      │   ├── PVDNet_nah.pytorch
      │   ├── PVDNet_large_nah.pytorch
      

Testing models of TOG2021

For PSNRs and SSIMs reported in the paper, we use the approach of Koehler et al. following Su et al., that first aligns two images using global translation to represent the ambiguity in the pixel location caused by blur.
Refer here for the evaluation code.

## Table 4 in the main paper (Evaluation on Su etal's dataset)
# Our final model 
CUDA_VISIBLE_DEVICES=0 python run.py --mode PVDNet_DVD --config config_PVDNet --data DVD --ckpt_abs_name ckpt/PVDNet_DVD.pytorch

## Table 5 in the main paper (Evaluation on Nah etal's dataset)
# Our final model 
CUDA_VISIBLE_DEVICES=0 python run.py --mode PVDNet_nah --config config_PVDNet --data nah --ckpt_abs_name ckpt/PVDNet_nah.pytorch

# Larger model
CUDA_VISIBLE_DEVICES=0 python run.py --mode PVDNet_large_nah --config config_PVDNet_large --data nah --ckpt_abs_name ckpt/PVDNet_large_nah.pytorch

Note:

  • Testing results will be saved in [LOG_ROOT]/PVDNet_TOG2021/[mode]/result/quanti_quali/[mode]_[epoch]/[data]/.
  • [LOG_ROOT] is set to ./logs/ by default. Refer here for more details about the logging.
  • options
    • --data: The name of a dataset to evaluate: DVD | nah | random. Default: DVD
      • The data structure can be modified in the function set_eval_path(..) in ./configs/config.py.
      • random is for testing models with any video frames, which should be placed as [DATASET_ROOT]/random/[video_name]/*.[jpg|png].

Wiki

Citation

If you find this code useful, please consider citing:

@artical{Son_2021_TOG,
    author = {Son, Hyeongseok and Lee, Junyong and Lee, Jonghyeop and Cho, Sunghyun and Lee, Seungyong},
    title = {Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes},
    journal = {ACM Transactions on Graphics},
    year = {2021}
}

Contact

Open an issue for any inquiries. You may also have contact with [email protected] or [email protected]

Resources

All material related to our paper is available by following links:

Link
The main paper
arXiv
Supplementary Files
Checkpoint Files
Su et al [2017]'s dataset (reference)
Nah et al. [2017]'s dataset (reference)

License

This software is being made available under the terms in the LICENSE file.

Any exemptions to these terms require a license from the Pohang University of Science and Technology.

About Coupe Project

Project ‘COUPE’ aims to develop software that evaluates and improves the quality of images and videos based on big visual data. To achieve the goal, we extract sharpness, color, composition features from images and develop technologies for restoring and improving by using them. In addition, personalization technology through user reference analysis is under study.

Please check out other Coupe repositories in our Posgraph github organization.

Useful Links

Owner
Junyong Lee
Ph.D candidate at POSTECH
Junyong Lee
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Model

PLAI Group at UBC 42 Dec 06, 2022
A Simple Long-Tailed Rocognition Baseline via Vision-Language Model

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

Teli Ma 4 Jan 20, 2022
Source code of the paper Meta-learning with an Adaptive Task Scheduler.

ATS About Source code of the paper Meta-learning with an Adaptive Task Scheduler. If you find this repository useful in your research, please cite the

Huaxiu Yao 16 Dec 26, 2022
Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices, ACM Multimedia 2021

Codes for ECBSR Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices Xindong Zhang, Hui Zeng, Lei Zhang ACM Multimedia 202

xindong zhang 236 Dec 26, 2022
[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Learning to Compose Visual Relations This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations. Demo Imag

Nan Liu 88 Jan 04, 2023
Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Regression Transformer Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression . Development se

International Business Machines 27 Jan 05, 2023
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Robotics and Perception Group 104 Nov 16, 2022
All of the figures and notebooks for my deep learning book, for free!

"Deep Learning - A Visual Approach" by Andrew Glassner This is the official repo for my book from No Starch Press. Ordering the book My book is called

Andrew Glassner 227 Jan 04, 2023
Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

longlongman 170 Dec 01, 2022
LoL Runes Recommender With Python

LoL-Runes-Recommender Para ejecutar la aplicación se debe llamar a execute_app.p

Sebastián Salinas 1 Jan 10, 2022
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
Pipeline for employing a Lightweight deep learning models for LOW-power systems

PL-LOW A high-performance deep learning model lightweight pipeline that gradually lightens deep neural networks in order to utilize high-performance d

POSTECH Data Intelligence Lab 9 Aug 13, 2022
The PyTorch implementation for paper "Neural Texture Extraction and Distribution for Controllable Person Image Synthesis" (CVPR2022 Oral)

ArXiv | Get Start Neural-Texture-Extraction-Distribution The PyTorch implementation for our paper "Neural Texture Extraction and Distribution for Cont

Ren Yurui 111 Dec 10, 2022
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

Katsuya Hyodo 6 May 15, 2022
Learn about quantum computing and algorithm on quantum computing

quantum_computing this repo contains everything i learn about quantum computing and algorithm on quantum computing what is aquantum computing quantum

arfy slowy 8 Dec 25, 2022
PlaidML is a framework for making deep learning work everywhere.

A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R

PlaidML 4.5k Jan 02, 2023
Teaches a student network from the knowledge obtained via training of a larger teacher network

Distilling-the-knowledge-in-neural-network Teaches a student network from the knowledge obtained via training of a larger teacher network This is an i

Abhishek Sinha 146 Dec 11, 2022
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 04, 2023