Tree-based Search Graph for Approximate Nearest Neighbor Search

Related tags

Deep LearningTBSG
Overview

TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search.

TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an approximation of Monotonic Search Network (MSNET). TBSG is very efficient with high precision.

Benchmark datasets

Datasets | No. of base | dimension | No. of query | download link
Sift | 1,000,000 | 128 | 10,000 | (http://corpus-texmex.irisa.fr/)
Gist | 1,000,000 | 300 | 1,000 | (http://corpus-texmex.irisa.fr/)
Glove | 1,183,514 | 100 | 10,000 | (http://downloads.zjulearning.org.cn/data/glove-100.tar.gz)
Crawl | 1,989,995 | 300 | 10,000 | (http://commoncrawl.org/)

How to use TBSG

1) compile

  • Prerequisite : openmp, cmake, eigen3
$ cd /path/to/project  
$ cmake . && make  

2) build an approximate kNNG

We use efanna_graph to build the kNNG.

3) create a TBSG index

$ cd /path/to/project/  
$ ./TBSG_index data_path M S MP nnfile save_path  

data_path is the path of base data.
M is the maximum of size of neighbors.
S is the candidate set size to build TBSG.
MP is the minimum of min_prob.
nnfile is the file of k nearest neighbor graph.
save_path is the path to save the index.

4) search with TBSG index

$ cd /path/to/project/
$ ./TBSG_search data_path query_path groundtruth_path save_path step

data_path is the path of base data.
query_path is the path of query data.
groundtruth is the path of groundtruth data.
save_path is the path to save the index.
step is the step size to expand the search pool.

Parameters used for four datasets

parameters for building kNNG

Dataset K L iter S R
Sift 200 200 12 10 100
Gist 400 400 12 15 100
Glove 400 420 12 20 300
Crawl 400 420 12 20 100

parameters for building index

Datasets M S MP
Sift 50 100 0.53
Gist 70 200 0.515
Glove 80 300 0.53
Crawl 50 200 0.53
Owner
Fanxbin
Fanxbin
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternativ

9 Oct 18, 2022
An offline deep reinforcement learning library

d3rlpy: An offline deep reinforcement learning library d3rlpy is an offline deep reinforcement learning library for practitioners and researchers. imp

Takuma Seno 817 Jan 02, 2023
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)

Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap

Cameron Davidson-Pilon 25.1k Jan 02, 2023
Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations.

Pyserini Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations. Retrieval using sparse re

Castorini 706 Dec 29, 2022
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

Wang Yijun 109 Nov 29, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
LoL Runes Recommender With Python

LoL-Runes-Recommender Para ejecutar la aplicación se debe llamar a execute_app.p

Sebastián Salinas 1 Jan 10, 2022
Differentiable Annealed Importance Sampling (DAIS)

Differentiable Annealed Importance Sampling (DAIS) This repository contains the code to reproduce the DAIS results from the paper Differentiable Annea

Guodong Zhang 6 Dec 26, 2021
Official implementation of "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers"

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 31, 2022
Tool for live presentations using manim

manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce

Federico Galatolo 146 Jan 06, 2023
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes

Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes [Paper] Method overview 4DMatch Benchmark 4DMatch is a benchmark for matc

103 Jan 06, 2023
official implementation for the paper "Simplifying Graph Convolutional Networks"

Simplifying Graph Convolutional Networks Updates As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After

Tianyi 727 Jan 01, 2023
masscan + nmap + Finger

说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/

Ryan 3 Mar 25, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023
Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021) Introduction This is the official repository for the PyTorch implementation

165 Dec 07, 2022
Video2x - A lossless video/GIF/image upscaler achieved with waifu2x, Anime4K, SRMD and RealSR.

Official Discussion Group (Telegram): https://t.me/video2x A Discord server is also available. Please note that most developers are only on Telegram.

K4YT3X 5.9k Dec 31, 2022
An Implicit Function Theorem (IFT) optimizer for bi-level optimizations

iftopt An Implicit Function Theorem (IFT) optimizer for bi-level optimizations. Requirements Python 3.7+ PyTorch 1.x Installation $ pip install git+ht

The Money Shredder Lab 2 Dec 02, 2021
Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models

Official PyTorch implementation for "On Fast Sampling of Diffusion Probabilistic Models". FastDPM generation on CIFAR-10, CelebA, and LSUN datasets. S

Zhifeng Kong 68 Dec 26, 2022