Azion the best solution of Edge Computing in the world.

Overview

Azion Edge Function docker action

Create or update an Edge Functions on Azion Edge Nodes.

The domain name is the key for decision to a create or update an Edge Function, then if the domain name is already on use by an Edge Function, the function will be updated.

API Inputs

azion-auth

Required Authentication method

Create your free account on Azion site https://azion.com to use this action.

For authentication you can use Basic or Token methods.

Details how to create your Token or generate a base64 for Basic method, please visit https://api.azion.com/#58ba6991-2fe6-415c-9f17-a44dc0bc8cd4. Token authorization ensure more secure method than Basic, tokens are valid up to 24 hours, generate other token if it's expired.

  • For Basic method use in this input “Authorization: Basic ”
    • For example: “Authorization: Basic dXNlckdBabn1hiW46cGFzc3dvcmQK”
  • For Token method use in this input "Authorization: TOKEN[YOUR TOKEN HERE]"
    • For example: "Authorization: TOKEN[455SAFafa#$sfdsf789aswas23casf3=]

config

Required Configuration file with Azion Edge Functions details

In the action.yaml file, you have the configuration example please fill with your own data:

  • name: name of your Edge Function
  • path: path and filename with the source code using JavaScript language.
  • domain: your domain, maybe a CNAME record
  • args: parameters for use in the edge function at runtime, the argument name and value of each argument used on the JavaScript code.
    • arg1 "first argument name" : "value of first argument"
    • arg2 "second argument name" : "value of second argument"
    • arg..N "N argument" : "value of N argument"
  • path_uri: the URI path of your edge function
  • active: boolean that control if your Edge Function is active or not, domain values (true|false). Your function is only accessible when it is active true.

Outputs

domain

URI of the edge function deployed.

You could use this URI, ir necessary you can create a CNAME at your DNS. For local use and testing, you can change your /etc/hosts for your domain.

Example usage on Github Action

File available

uses: actions/[email protected]
with:
  azion-auth: "Authorization: TOKEN[455SAFafa#$sfdsf789aswas23casf3=]
  config: 'function1.yaml'

Example of configuration file

Edit the action.yaml file, containing the details of your edge functions at Azion.

Don't change the edge_functions name, and name parameters but instead just complete with desired values. The exception is for args, when you need to change the arg names and arg values.

edge_functions:
  -
    path: "example/src/messages.js"
    domain: "www.yourdomain.com"
    name: "Function Hello World Azion"
    args: 
      arg1: "value1"
      arg2: "value2"
    path_uri: "/api/messages/"
    active: "true"

More details on Azion site

You might also like...
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

python_graphs This package is for computing graph representations of Python programs for machine learning applications. It includes the following modu

Blender scripts for computing geodesic distance
Blender scripts for computing geodesic distance

GeoDoodle Geodesic distance computation for Blender meshes Table of Contents Overivew Usage Implementation Overview This addon provides an operator fo

A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

Code for the ICCV 2021 paper
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Pixel Difference Convolution This repository contains the PyTorch implementation for "Pixel Difference Networks for Efficient Edge Detection" by Zhuo

Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices, ACM Multimedia 2021

Codes for ECBSR Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices Xindong Zhang, Hui Zeng, Lei Zhang ACM Multimedia 202

Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

🗣️ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

Releases(v0.2)
Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir.

NetScanner.py Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir. Linux'da Kullanımı: git clone https://github.com/

4 Aug 23, 2021
An abstraction layer for mathematical optimization solvers.

MathOptInterface Documentation Build Status Social An abstraction layer for mathematical optimization solvers. Replaces MathProgBase. Citing MathOptIn

JuMP-dev 284 Jan 04, 2023
Deep Residual Networks with 1K Layers

Deep Residual Networks with 1K Layers By Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Microsoft Research Asia (MSRA). Table of Contents Introduc

Kaiming He 856 Jan 06, 2023
Code for Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks

Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks Under construction. Description Code for Phase diagram of S

Rodrigo Veiga 3 Nov 24, 2022
QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

Google 437 Jan 03, 2023
InferPy: Deep Probabilistic Modeling with Tensorflow Made Easy

InferPy: Deep Probabilistic Modeling Made Easy InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top

PGM-Lab 141 Oct 13, 2022
PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)

Spatially Consistent Representation Learning (CVPR'21) Official PyTorch implementation of Spatially Consistent Representation Learning (SCRL). This re

Kakao Brain 102 Nov 03, 2022
Python PID Tuner - Based on a FOPDT model obtained using a Open Loop Process Reaction Curve

PythonPID_Tuner Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a rough e

6 Jan 14, 2022
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Sayom Shakib 4 Nov 03, 2022
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard test set accuracy

PixMix Introduction In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard te

Andy Zou 79 Dec 30, 2022
[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning DouZero is a reinforcement learning framework for DouDizhu (斗地主), t

Kwai Inc. 3.1k Jan 04, 2023
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
A Python package for time series augmentation

tsaug tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to conn

Arundo Analytics 278 Jan 01, 2023
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intenti

NVIDIA Corporation 6.9k Jan 03, 2023
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022
Fast Scattering Transform with CuPy/PyTorch

Announcement 11/18 This package is no longer supported. We have now released kymatio: http://www.kymat.io/ , https://github.com/kymatio/kymatio which

Edouard Oyallon 289 Dec 07, 2022
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
PyTorch experiments with the Zalando fashion-mnist dataset

zalando-pytorch PyTorch experiments with the Zalando fashion-mnist dataset Project Organization ├── LICENSE ├── Makefile - Makefile with co

Federico Baldassarre 31 Sep 25, 2021
AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning AutoPentest-DRL is an automated penetration testing framework based o

Cyber Range Organization and Design Chair 217 Jan 01, 2023