SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

Overview

SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

A novel graph neural network (GNN) based model (termed SlideGraph+) to predict HER2 status directly from whole-slide images of routine Haematoxylin and Eosin (H&E) slides. This pipeline generates node-level and WSI-level predictions by using a graph representation to capture the biological geometric structure of the cellular architecture at the entire WSI level. A pre-processing function is used to do adaptive spatial agglomerative clustering to group spatially neighbouring regions with high degree of feature similarity and construct a WSI-level graph based on clusters.

Data

The repository can be used for constructing WSI-level graphs, training SlideGraph and predicting HER2 status on WSI-level graphs. The training data used in this study was downloaded from TCGA using https://portal.gdc.cancer.gov/projects/TCGA-BRCA.

Workflow of predicting HER2 status from H&E images

workflow1

GNN network architecture

GCN_architecture5

Environment

Please refer to requirements.txt

Repository Structure

Below are the main executable scripts in the repository:

features_to_graph.py: Construct WSI-level graph

platt.py: Normalise classifier output scores to a probability value

GNN_pr.py: Graph neural network architecture

train.py: Main training and inference script

Training the classification model

Data format

For training, each WSI has to have a WSI-level graph. In order to do that, it is required to generate x,y coordinates, feature vectors for local regions in the WSIs. x,y coordinates can be cental points of patches, centroid of nuclei and so on. Feature varies. It can be nuclear composition features (e.g.,counts of different types of nuclei in the patch), morphological features, receptor expression features, deep features (or neuralfeature embdeddings from a pre-trained neural network) and so on.

Each WSI should be fitted with one npz file which contains three arrays: x_coordinate, y_coordinate and corresponding region-level feature vector. Please refer to feature.npz in the example folder.

Graph construction

After npz files are ready, run features_to_graph.py to group spatially neighbouring regions with high degree of feature similarity and construct a graph based on clusters for each WSI.

  • Set path to the feature directories (feature_path)
  • Set path where graphs will be saved (output_path)
  • Modify hyperparameters, including similarity parameters (lambda_d, lambda_f), hierachical clustering distance threshold (lamda_h) and node connection distance threshold (distance_thres)

Training

After getting graphs of all WSIs,

  • Set path to the graph directories (bdir) in train.py
  • Set path to the clinical data (clin_path) in train.py
  • Modify hyperparameters, including learning_rate, weight_decay in train.py

Train the classification model and do 5-fold stratified cross validation using

python train.py

In each fold, top 10 best models (on validation dataset) and the model from the last epoch are tested on the testing dataset. Averaged classification performance among 5 folds are presented in the end.

Heatmap of node-level prediction scores

heatmap_final

Heatmaps of node-level prediction scores and zoomed-in regions which have different levels of HER2 prediction score. Boundary colour of each zoomed-in region represents its contribution to HER2 positivity (prediction score).

License

The source code SlideGraph as hosted on GitHub is released under the GNU General Public License (Version 3).

The full text of the licence is included in LICENSE.md.

Welcome to The Eigensolver Quantum School, a quantum computing crash course designed by students for students.

TEQS Welcome to The Eigensolver Quantum School, a crash course designed by students for students. The aim of this program is to take someone who has n

The Eigensolvers 53 May 18, 2022
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022
Paddle-Skeleton-Based-Action-Recognition - DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN

Paddle-Skeleton-Action-Recognition DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN. Yo

Chenxu Peng 3 Nov 02, 2022
Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters"

Manga Character Screentone Synthesis Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters" presented in IEEE ISM 2

Tsubota 2 Nov 20, 2021
Existing Literature about Machine Unlearning

Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp

Jonathan Brophy 213 Jan 08, 2023
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir.

NetScanner.py Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir. Linux'da Kullanımı: git clone https://github.com/

4 Aug 23, 2021
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Discord Multi Tool that focuses on design and easy usage

Multi-Tool-v1.0 Discord Multi Tool that focuses on design and easy usage Delete webhook Block all friends Spam webhook Modify webhook Webhook info Tok

Lodi#0001 24 May 23, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
TRIQ implementation

TRIQ Implementation TF-Keras implementation of TRIQ as described in Transformer for Image Quality Assessment. Installation Clone this repository. Inst

Junyong You 115 Dec 30, 2022
This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation".

IR-GAIL This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation". Dependency The experiments are de

Zhao-Heng Yin 1 Jul 14, 2022
Pytorch Implementation of LNSNet for Superpixel Segmentation

LNSNet Overview Official implementation of Learning the Superpixel in a Non-iterative and Lifelong Manner (CVPR'21) Learning Strategy The proposed LNS

42 Oct 11, 2022
State of the Art Neural Networks for Generative Deep Learning

pyradox-generative State of the Art Neural Networks for Generative Deep Learning Table of Contents pyradox-generative Table of Contents Installation U

Ritvik Rastogi 8 Sep 29, 2022
Graph Representation Learning via Graphical Mutual Information Maximization

GMI (Graphical Mutual Information) Graph Representation Learning via Graphical Mutual Information Maximization (Peng Z, Huang W, Luo M, et al., WWW 20

93 Dec 29, 2022
Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Rethinking Graph Neural Architecture Search from Message-passing Intro The GNAS can automatically learn better architecture with the optimal depth of

Shaofei Cai 48 Sep 30, 2022
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

9 Nov 08, 2022
End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021)

PDVC Official implementation for End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021) [paper] [valse论文速递(Chinese)] This repo supports:

Teng Wang 118 Dec 16, 2022
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022