ArcaneGAN by Alex Spirin

Overview

ArcaneGAN by Alex Spirin

Colab visitors

Changelog

ArcaneGAN v0.3

Videos processed by the huggingface video inference colab.

obama2.mp4
ryan2.mp4

Image samples

arcaneganv03

Faces were enhanced via GPEN before applying the ArcaneGAN v0.3 filter.

ArcaneGAN v0.2

The release is here image photo_2021-12-04_08-05-34 photo_2021-12-04_07-23-17 weewq

Implementation Details

It does something, but not much at the moment.

The model is a pytroch *.jit of a fastai v1 flavored u-net trained on a paired dataset, generated via a blended stylegan2. You can see the blending colab I've used here.

Comments
  • How to convert the FastAI model to Pytorch JIT

    How to convert the FastAI model to Pytorch JIT

    Hi,

    I trained a model with unet_learner but I can't convert it to jit.

    I run the following code: torch.jit.save(torch.jit.script(learn.model), 'jit.pt')

    Here is the error:

    UnsupportedNodeError: GeneratorExp aren't supported: File "/usr/local/lib/python3.7/dist-packages/fastai/callbacks/hooks.py", line 21 "Applieshook_functomodule,input,output." if self.detach: input = (o.detach() for o in input ) if is_listy(input ) else input.detach() ~ <--- HERE output = (o.detach() for o in output) if is_listy(output) else output.detach() self.stored = self.hook_func(module, input, output)

    May I know how you convert it to a jit model? Thanks

    opened by ramtiin 2
  • Ошибка

    Ошибка

    Добрый вечер.В ArcaneGAN на colab for videos,выдаёт ошибку:

    RuntimeError: CUDA out of memory. Tried to allocate 2.80 GiB (GPU 0; 11.17 GiB total capacity; 5.74 GiB already allocated; 2.21 GiB free; 8.44 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

    Помогите пожалуйста!

    opened by Zzip7 2
  • How do you change the style of the whole image

    How do you change the style of the whole image

    Nice work! My only confusion is how you change the style of the whole image instead of just the face. Usually, StyleGAN generates aligned face images by fine-tuning the FFHQ checkpoint. How does the pix2pix model trained with these face image pairs work with the full image or frame.

    opened by zhanglonghao1992 2
  • Architecture for video

    Architecture for video

    Hi, what does the architecture look like? Is it similar to Pix2Pix? And for processing of the video, are you doing anything extra to make sure the frames are consistent?

    opened by unography 2
  • How to prevent eyes occur in nose?

    How to prevent eyes occur in nose?

    Hello, I try your model and it's amazing, but I find in some pictures if the nose is too big, there will be eyes in the nose. I try to lower the 'target_face' and it can work. But the details like the light of the eyes and background will also lose when I lower the 'target_face'. So I wonder is there a way to prevent the eyes occurs in the nose and keep the details in the meantime? image

    opened by Folkfive 1
  • support arbitrary image size?

    support arbitrary image size?

    Great work!

    The unet prediction result will be cropped to be the same size as the training input, e.g. 256 or 512. For arbitrary image size (e.g. 1280*720), how to config or set the model to output the same size of the input image as your colab did? Thank you.

    opened by foobarhe 1
  • RuntimeError: CUDA out of memory

    RuntimeError: CUDA out of memory

    Добрый вечер.Извините,это опять я.Снова эта ошибка появляется.Можно ли,самому эту ошибку решать?Или исправлять можете только вы?Обьясните пожалуйста подробно.

    opened by Zzip7 1
  • about the paired datasets generated by stylegan

    about the paired datasets generated by stylegan

    how do you make sure the background and expression similarity between the generated input(face) and target(style face) ? I find that the style is too weak when less finetune and the similarity is too weak when more finetune, how do you solve it ? Would you like to share the paired datasets generated code with me ? thanks a lot ~

    opened by Leocien 1
  • Any news for training code?

    Any news for training code?

    Interesting topic... I wonder how you trained the model, especially the augmentation part. Fixed crop limitation is a well-known problem and would like to know how you handle it. :)

    opened by dongyun-kim-arch 0
  •  tuple issue

    tuple issue

    Was trying the ArcaneGan video colab but I am having a tuple issue can you please help, i am really excited to try the Arcane video can you please help out

    opened by mau021 0
  • What GPU is used for training?

    What GPU is used for training?

    Hi,

    I want to train the Fastai u-net model. However, when I try to train the critic (learn_critic.fit_one_cycle(6, 1e-3)), I get the following error:

    CUDA out of memory. Tried to allocate 4.00 GiB (GPU 0; 14.76 GiB total capacity; 9.78 GiB already allocated; 891.75 MiB free; 12.57 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

    The GPU is a Tesla T4 with 16 GB of VRAM. My batch size is 4 and the training images size is 512*512. I also tried with lower numbers, but I'm still getting the same error.

    opened by ramtiin 2
  • How to make the style stronger?

    How to make the style stronger?

    The following are input image, my training output from pair label supervision, and the output from your test model。 I trained my model (Super-Resolution model) on the images from your model outputs, I find it difficult to change the facial features。 Like the eyes and face texture are changed, how to do it ? I use L1Loss (weight is 1) + PerceptualLoss (weight is 1)+ GANLoss (weight is 0.1),

    6W2HG4GXC2

    opened by xuanandsix 1
Releases(v0.4)
  • v0.4(Dec 25, 2021)

    ArcaneGAN v0.4

    Colab visitors

    The main differences are:

    • lighter styling (closer to original input)
    • sharper result
    • happier faces
    • reduced childish eyes effect
    • reduced stubble on feminine faces
    • increased temporal stability on videos
    • reduced mouth\teeth artifacts

    Image samples

    v0.3 vs v0.4

    v3-4

    Video samples

    https://user-images.githubusercontent.com/11751592/146966428-f4e27929-19dd-423f-a772-8aee709d2116.mp4

    https://user-images.githubusercontent.com/11751592/146966462-6511998e-77f5-4fd2-8ad9-5709bf0cd172.mp4

    Source code(tar.gz)
    Source code(zip)
    ArcaneGANv0.4.jit(59.75 MB)
  • v0.3(Dec 12, 2021)

    ArcaneGAN v0.3

    Colab

    Video samples

    This is a stronger-styled version. It performs okay on videos, though visible flickering is present. Here are some video examples.

    https://user-images.githubusercontent.com/11751592/145702737-c02b8b00-ad30-4358-98bf-97c8ad7fefdf.mp4

    https://user-images.githubusercontent.com/11751592/145702740-afd3377d-d117-467d-96ca-045e25d85ac6.mp4

    Image samples

    arcaneganv03

    Faces were enhanced via GPEN before applying the ArcaneGAN v0.3 filter.

    The model is a pytroch *.jit of a fastai v1 flavored u-net trained on a paired dataset, generated via a blended stylegan2. You can see the blending colab I've used here.

    Source code(tar.gz)
    Source code(zip)
    ArcaneGANv0.3.jit(79.40 MB)
  • v0.2(Dec 7, 2021)

    ArcaneGAN v0.2 This version is a bit better at doing something other than making images darker :D

    Here are some image pairs. I've specifically picked various images to see how the model performs in the wild, not on aligned and cropped faces. ds e42 ewewe maxresdefault photo_2021-11-16_19-32-15 photo_2021-11-16_19-34-02 photo_2021-11-16_19-34-33 photo_2021-11-16_19-34-49 photo_2021-11-29_13-23-56 photo_2021-11-29_13-26-13 photo_2021-12-04_07-22-51 photo_2021-12-04_07-23-17 photo_2021-12-04_07-25-29 photo_2021-12-04_07-48-29 photo_2021-12-04_08-04-43 photo_2021-12-04_08-06-17 photo_2021-12-04_08-06-40 photo_2021-12-04_08-07-04 photo_2021-12-04_08-09-53

    photo_2021-12-04_11-26-27 weewq 0_256_ 1_256_Всем онеме посоны

    The model is a pytroch *.jit of a fastai v1 flavored u-net trained on a paired dataset, generated via a blended stylegan2. You can see the blending colab I've used here.

    Inference notebook is here

    Source code(tar.gz)
    Source code(zip)
    ArcaneGANv0.2.jit(79.52 MB)
  • v0.1(Dec 6, 2021)

    ArcaneGAN v0.1 This is a proof of concept release. The model is in beta (which means it's beta than nothin')

    Here are some image pairs. I've specifically picked various images to see how the model performs in the wild, not on aligned and cropped faces.

    0_256_ 258c27bcb658a86765361c1faca7b749fa3a36aaf07e975b408281c0a9c76513 e42 ewewe maxresdefault photo_2021-11-16_19-32-15 photo_2021-11-16_19-34-02 photo_2021-11-16_19-34-33 photo_2021-11-16_19-34-49 photo_2021-12-04_07-23-17 photo_2021-12-04_07-48-29 photo_2021-12-04_08-06-40 photo_2021-12-04_08-07-04 photo_2021-12-04_11-26-27

    It does something, but not much at the moment.

    The model is a pytroch *.jit of a fastai v1 flavored u-net trained on a paired dataset, generated via a blended stylegan2. You can see the blending colab I've used here.

    Inference notebook is here

    Source code(tar.gz)
    Source code(zip)
    ArcaneGANv0.1.jit(79.53 MB)
Owner
Alex
Alex
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022
Official Implementation of "Learning Disentangled Behavior Embeddings"

DBE: Disentangled-Behavior-Embedding Official implementation of Learning Disentangled Behavior Embeddings (NeurIPS 2021). Environment requirement The

Mishne Lab 12 Sep 28, 2022
DIRL: Domain-Invariant Representation Learning

DIRL: Domain-Invariant Representation Learning Domain-Invariant Representation Learning (DIRL) is a novel algorithm that semantically aligns both the

Ajay Tanwani 30 Nov 07, 2022
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
Hyper-parameter optimization for sklearn

hyperopt-sklearn Hyperopt-sklearn is Hyperopt-based model selection among machine learning algorithms in scikit-learn. See how to use hyperopt-sklearn

1.4k Jan 01, 2023
A pytorch-based deep learning framework for multi-modal 2D/3D medical image segmentation

A 3D multi-modal medical image segmentation library in PyTorch We strongly believe in open and reproducible deep learning research. Our goal is to imp

Adaloglou Nikolas 1.2k Dec 27, 2022
Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"

On-the-Fly Adaptation Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation Paper Introduction One major probl

Jeya Maria Jose 17 Nov 10, 2022
Unofficial Tensorflow-Keras implementation of Fastformer based on paper [Fastformer: Additive Attention Can Be All You Need](https://arxiv.org/abs/2108.09084).

Fastformer-Keras Unofficial Tensorflow-Keras implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Tensorflo

Yam Peleg 10 Jan 30, 2022
masscan + nmap + Finger

说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/

Ryan 3 Mar 25, 2022
This repository includes different versions of the prescribed-time controller as Simulink blocks and MATLAB script codes for engineering applications.

Prescribed-time Control Prescribed-time control (PTC) blocks in Simulink environment, MATLAB R2020b. For more theoretical details, refer to the papers

Amir Shakouri 1 Mar 11, 2022
Second-order Attention Network for Single Image Super-resolution (CVPR-2019)

Second-order Attention Network for Single Image Super-resolution (CVPR-2019) "Second-order Attention Network for Single Image Super-resolution" is pub

516 Dec 28, 2022
A minimal implementation of face-detection models using flask, gunicorn, nginx, docker, and docker-compose

Face-Detection-flask-gunicorn-nginx-docker This is a simple implementation of dockerized face-detection restful-API implemented with flask, Nginx, and

Pooya-Mohammadi 30 Dec 17, 2022
Level Based Customer Segmentation

level_based_customer_segmentation Level Based Customer Segmentation Persona Veri Seti kullanılarak müşteri segmentasyonu yapılmıştır. KOLONLAR : PRICE

Buse Yıldırım 6 Dec 21, 2021
PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to handle and build

simple, elegant and safe Introduction PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to ha

Johnsz 2 Mar 02, 2022
Tensorflow implementation for "Improved Transformer for High-Resolution GANs" (NeurIPS 2021).

HiT-GAN Official TensorFlow Implementation HiT-GAN presents a Transformer-based generator that is trained based on Generative Adversarial Networks (GA

Google Research 78 Oct 31, 2022
the code for paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration"

EOW-Softmax This code is for the paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration". Accepted by ICCV21. Usage Commnd exa

Yezhen Wang 36 Dec 02, 2022
A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented in Python.

Reinforcement-Learning-Notebooks A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented

Pulkit Khandelwal 1k Dec 28, 2022
Özlem Taşkın 0 Feb 23, 2022
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022