ArcaneGAN by Alex Spirin

Overview

ArcaneGAN by Alex Spirin

Colab visitors

Changelog

ArcaneGAN v0.3

Videos processed by the huggingface video inference colab.

obama2.mp4
ryan2.mp4

Image samples

arcaneganv03

Faces were enhanced via GPEN before applying the ArcaneGAN v0.3 filter.

ArcaneGAN v0.2

The release is here image photo_2021-12-04_08-05-34 photo_2021-12-04_07-23-17 weewq

Implementation Details

It does something, but not much at the moment.

The model is a pytroch *.jit of a fastai v1 flavored u-net trained on a paired dataset, generated via a blended stylegan2. You can see the blending colab I've used here.

Comments
  • How to convert the FastAI model to Pytorch JIT

    How to convert the FastAI model to Pytorch JIT

    Hi,

    I trained a model with unet_learner but I can't convert it to jit.

    I run the following code: torch.jit.save(torch.jit.script(learn.model), 'jit.pt')

    Here is the error:

    UnsupportedNodeError: GeneratorExp aren't supported: File "/usr/local/lib/python3.7/dist-packages/fastai/callbacks/hooks.py", line 21 "Applieshook_functomodule,input,output." if self.detach: input = (o.detach() for o in input ) if is_listy(input ) else input.detach() ~ <--- HERE output = (o.detach() for o in output) if is_listy(output) else output.detach() self.stored = self.hook_func(module, input, output)

    May I know how you convert it to a jit model? Thanks

    opened by ramtiin 2
  • Ошибка

    Ошибка

    Добрый вечер.В ArcaneGAN на colab for videos,выдаёт ошибку:

    RuntimeError: CUDA out of memory. Tried to allocate 2.80 GiB (GPU 0; 11.17 GiB total capacity; 5.74 GiB already allocated; 2.21 GiB free; 8.44 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

    Помогите пожалуйста!

    opened by Zzip7 2
  • How do you change the style of the whole image

    How do you change the style of the whole image

    Nice work! My only confusion is how you change the style of the whole image instead of just the face. Usually, StyleGAN generates aligned face images by fine-tuning the FFHQ checkpoint. How does the pix2pix model trained with these face image pairs work with the full image or frame.

    opened by zhanglonghao1992 2
  • Architecture for video

    Architecture for video

    Hi, what does the architecture look like? Is it similar to Pix2Pix? And for processing of the video, are you doing anything extra to make sure the frames are consistent?

    opened by unography 2
  • How to prevent eyes occur in nose?

    How to prevent eyes occur in nose?

    Hello, I try your model and it's amazing, but I find in some pictures if the nose is too big, there will be eyes in the nose. I try to lower the 'target_face' and it can work. But the details like the light of the eyes and background will also lose when I lower the 'target_face'. So I wonder is there a way to prevent the eyes occurs in the nose and keep the details in the meantime? image

    opened by Folkfive 1
  • support arbitrary image size?

    support arbitrary image size?

    Great work!

    The unet prediction result will be cropped to be the same size as the training input, e.g. 256 or 512. For arbitrary image size (e.g. 1280*720), how to config or set the model to output the same size of the input image as your colab did? Thank you.

    opened by foobarhe 1
  • RuntimeError: CUDA out of memory

    RuntimeError: CUDA out of memory

    Добрый вечер.Извините,это опять я.Снова эта ошибка появляется.Можно ли,самому эту ошибку решать?Или исправлять можете только вы?Обьясните пожалуйста подробно.

    opened by Zzip7 1
  • about the paired datasets generated by stylegan

    about the paired datasets generated by stylegan

    how do you make sure the background and expression similarity between the generated input(face) and target(style face) ? I find that the style is too weak when less finetune and the similarity is too weak when more finetune, how do you solve it ? Would you like to share the paired datasets generated code with me ? thanks a lot ~

    opened by Leocien 1
  • Any news for training code?

    Any news for training code?

    Interesting topic... I wonder how you trained the model, especially the augmentation part. Fixed crop limitation is a well-known problem and would like to know how you handle it. :)

    opened by dongyun-kim-arch 0
  •  tuple issue

    tuple issue

    Was trying the ArcaneGan video colab but I am having a tuple issue can you please help, i am really excited to try the Arcane video can you please help out

    opened by mau021 0
  • What GPU is used for training?

    What GPU is used for training?

    Hi,

    I want to train the Fastai u-net model. However, when I try to train the critic (learn_critic.fit_one_cycle(6, 1e-3)), I get the following error:

    CUDA out of memory. Tried to allocate 4.00 GiB (GPU 0; 14.76 GiB total capacity; 9.78 GiB already allocated; 891.75 MiB free; 12.57 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

    The GPU is a Tesla T4 with 16 GB of VRAM. My batch size is 4 and the training images size is 512*512. I also tried with lower numbers, but I'm still getting the same error.

    opened by ramtiin 2
  • How to make the style stronger?

    How to make the style stronger?

    The following are input image, my training output from pair label supervision, and the output from your test model。 I trained my model (Super-Resolution model) on the images from your model outputs, I find it difficult to change the facial features。 Like the eyes and face texture are changed, how to do it ? I use L1Loss (weight is 1) + PerceptualLoss (weight is 1)+ GANLoss (weight is 0.1),

    6W2HG4GXC2

    opened by xuanandsix 1
Releases(v0.4)
  • v0.4(Dec 25, 2021)

    ArcaneGAN v0.4

    Colab visitors

    The main differences are:

    • lighter styling (closer to original input)
    • sharper result
    • happier faces
    • reduced childish eyes effect
    • reduced stubble on feminine faces
    • increased temporal stability on videos
    • reduced mouth\teeth artifacts

    Image samples

    v0.3 vs v0.4

    v3-4

    Video samples

    https://user-images.githubusercontent.com/11751592/146966428-f4e27929-19dd-423f-a772-8aee709d2116.mp4

    https://user-images.githubusercontent.com/11751592/146966462-6511998e-77f5-4fd2-8ad9-5709bf0cd172.mp4

    Source code(tar.gz)
    Source code(zip)
    ArcaneGANv0.4.jit(59.75 MB)
  • v0.3(Dec 12, 2021)

    ArcaneGAN v0.3

    Colab

    Video samples

    This is a stronger-styled version. It performs okay on videos, though visible flickering is present. Here are some video examples.

    https://user-images.githubusercontent.com/11751592/145702737-c02b8b00-ad30-4358-98bf-97c8ad7fefdf.mp4

    https://user-images.githubusercontent.com/11751592/145702740-afd3377d-d117-467d-96ca-045e25d85ac6.mp4

    Image samples

    arcaneganv03

    Faces were enhanced via GPEN before applying the ArcaneGAN v0.3 filter.

    The model is a pytroch *.jit of a fastai v1 flavored u-net trained on a paired dataset, generated via a blended stylegan2. You can see the blending colab I've used here.

    Source code(tar.gz)
    Source code(zip)
    ArcaneGANv0.3.jit(79.40 MB)
  • v0.2(Dec 7, 2021)

    ArcaneGAN v0.2 This version is a bit better at doing something other than making images darker :D

    Here are some image pairs. I've specifically picked various images to see how the model performs in the wild, not on aligned and cropped faces. ds e42 ewewe maxresdefault photo_2021-11-16_19-32-15 photo_2021-11-16_19-34-02 photo_2021-11-16_19-34-33 photo_2021-11-16_19-34-49 photo_2021-11-29_13-23-56 photo_2021-11-29_13-26-13 photo_2021-12-04_07-22-51 photo_2021-12-04_07-23-17 photo_2021-12-04_07-25-29 photo_2021-12-04_07-48-29 photo_2021-12-04_08-04-43 photo_2021-12-04_08-06-17 photo_2021-12-04_08-06-40 photo_2021-12-04_08-07-04 photo_2021-12-04_08-09-53

    photo_2021-12-04_11-26-27 weewq 0_256_ 1_256_Всем онеме посоны

    The model is a pytroch *.jit of a fastai v1 flavored u-net trained on a paired dataset, generated via a blended stylegan2. You can see the blending colab I've used here.

    Inference notebook is here

    Source code(tar.gz)
    Source code(zip)
    ArcaneGANv0.2.jit(79.52 MB)
  • v0.1(Dec 6, 2021)

    ArcaneGAN v0.1 This is a proof of concept release. The model is in beta (which means it's beta than nothin')

    Here are some image pairs. I've specifically picked various images to see how the model performs in the wild, not on aligned and cropped faces.

    0_256_ 258c27bcb658a86765361c1faca7b749fa3a36aaf07e975b408281c0a9c76513 e42 ewewe maxresdefault photo_2021-11-16_19-32-15 photo_2021-11-16_19-34-02 photo_2021-11-16_19-34-33 photo_2021-11-16_19-34-49 photo_2021-12-04_07-23-17 photo_2021-12-04_07-48-29 photo_2021-12-04_08-06-40 photo_2021-12-04_08-07-04 photo_2021-12-04_11-26-27

    It does something, but not much at the moment.

    The model is a pytroch *.jit of a fastai v1 flavored u-net trained on a paired dataset, generated via a blended stylegan2. You can see the blending colab I've used here.

    Inference notebook is here

    Source code(tar.gz)
    Source code(zip)
    ArcaneGANv0.1.jit(79.53 MB)
Owner
Alex
Alex
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples

Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples This repository is the official implementation of paper [Qimera: Data-free Q

Kanghyun Choi 21 Nov 03, 2022
Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection

CP-Cluster Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segme

Yichun Shen 41 Dec 08, 2022
PaddlePaddle GAN library, including lots of interesting applications like First-Order motion transfer, wav2lip, picture repair, image editing, photo2cartoon, image style transfer, and so on.

English | 简体中文 PaddleGAN PaddleGAN provides developers with high-performance implementation of classic and SOTA Generative Adversarial Networks, and s

6.4k Jan 09, 2023
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
The implementation code for "DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction"

DAGAN This is the official implementation code for DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruct

TensorLayer Community 159 Nov 22, 2022
As-ViT: Auto-scaling Vision Transformers without Training

As-ViT: Auto-scaling Vision Transformers without Training [PDF] Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, Denny Zhou In ICLR 2

VITA 68 Sep 05, 2022
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
A CV toolkit for my papers.

PyTorch-Encoding created by Hang Zhang Documentation Please visit the Docs for detail instructions of installation and usage. Please visit the link to

Hang Zhang 2k Jan 04, 2023
Lolviz - A simple Python data-structure visualization tool for lists of lists, lists, dictionaries; primarily for use in Jupyter notebooks / presentations

lolviz By Terence Parr. See Explained.ai for more stuff. A very nice looking javascript lolviz port with improvements by Adnan M.Sagar. A simple Pytho

Terence Parr 785 Dec 30, 2022
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

halo 368 Dec 06, 2022
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift

This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).

Matthieu Kirchmeyer 5 Dec 06, 2022
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w

Zifeng Wu 338 Dec 12, 2022
An extremely simple, intuitive, hardware-friendly, and well-performing network structure for LiDAR semantic segmentation on 2D range image. IROS21

FIDNet_SemanticKITTI Motivation Implementing complicated network modules with only one or two points improvement on hardware is tedious. So here we pr

YimingZhao 54 Dec 12, 2022
Bottom-up Human Pose Estimation

Introduction This is the official code of Rethinking the Heatmap Regression for Bottom-up Human Pose Estimation. This paper has been accepted to CVPR2

108 Dec 01, 2022
PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN in PyTorch PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in READM

Taehoon Kim 1k Jan 04, 2023
[CVPR 2022 Oral] MixFormer: End-to-End Tracking with Iterative Mixed Attention

MixFormer The official implementation of the CVPR 2022 paper MixFormer: End-to-End Tracking with Iterative Mixed Attention [Models and Raw results] (G

Multimedia Computing Group, Nanjing University 235 Jan 03, 2023
This is the official implementation for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents" in NeurIPS 2021.

Observe then Incentivize Experiments This is the code used for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents",

Cong Shen Research Group 0 Mar 08, 2022
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network

Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network This repository is the official implementation of Speech Separati

Kai Li (李凯) 116 Nov 09, 2022
Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Follow the development of our desktop client here Paaster Paaster is a secure by default end-to-end encrypted pastebin built with the objective of sim

Ward 211 Dec 25, 2022