Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Overview

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics

This repository is the official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics

Sungyong Seo*, Chuizheng Meng*, Yan Liu, Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics, ICLR 2020.

Data

Download the requried data.zip from Google Drive. Then,

cd /path/to/the/root/of/project
mkdir data
mv /path/to/data.zip ./data/
cd data
unzip data.zip

Environment

Docker (Recommended!)

First follow the official documents of Docker and nvidia-docker to install docker with CUDA support.

Use the following commands to build a docker image containing all necessary packages:

cd docker
bash build_docker.sh

This script will also copy the jupyter_notebook_config.py, which is the configuration file of Jupyter Notebook, into the docker image. The default password for Jupyter Notebook is 12345.

Use the following script to create a container from the built image:

bash rundocker-melady.sh

If the project directory is not under your home directory, modify rundocker-melady.sh to change the file mapping.

Manual Installation

# install python packages
pip install pyyaml tensorboardX geopy networkx tqdm
conda install pytorch==1.1.0 torchvision==0.2.2 cudatoolkit=9.0 -c pytorch
conda install -y matplotlib scipy pandas jupyter scikit-learn geopandas
conda install -y -c conda-forge jupyterlab igl meshplot

# install pytorch_geometric
export PATH=/usr/local/cuda/bin:$PATH
export CPATH=/usr/local/cuda/include:$CPATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
pip install --verbose --no-cache-dir torch-scatter==1.2.0
pip install --verbose --no-cache-dir torch-sparse==0.4.0
pip install --verbose --no-cache-dir torch-cluster==1.3.0
pip install --verbose --no-cache-dir torch-spline-conv==1.1.0
pip install torch-geometric==1.1.2

# specify numpy==1.16.2 to avoid loading error (>=1.16.3 may require allow_pickle=True in np.load)
pip install -I numpy==1.16.2 

Run

Experiments in Section 3.1 "Approximation of Directional Derivatives"

See the Jupyter Notebook approx-gradient/synthetic-gradient-approximation.ipynb for details.

Experiments in Section 3.2 "Graph Signal Prediction" and Section 4 "Prediction: Graph Signals on Land-based Weather Stations"

cd scripts
python train.py --extconf /path/to/exp/config/file --mode train --device cuda:0

Examples:

  • PA-DGN, Graph Signal Prediction of Synthetic Data
cd scripts
python train.py --extconf ../confs/iclrexps/irregular_varicoef_diff_conv_eqn_4nn_42_250sample/GraphPDE_GN_sum_notshared_4nn/conf.yaml --mode train --device cuda:0
  • PA-DGN, Prediction of Graph Signals on Land-based Weather Stations
cd scripts
python train.py --extconf ../confs/iclrexps/noaa_pt_states_withloc/GraphPDE_GN_RGN_16_notshared_4nn/conf.yaml --mode train --device cuda:0
  • PA-DGN, Sea Surface Temperature (SST) Prediction
cd scripts
python train.py --extconf ../confs/iclrexps/sst-daily_4nn_42_250sample/GraphPDE_GN_sum_notshared_4nn/conf.yaml --mode train --device cuda:0

Summary of Results

You can use results/print_results.ipynb to print tables of experiment results, including the mean value and the standard error of mean absolution error (MAE) of prediction tasks.

Reference

@inproceedings{seo*2020physicsaware,
title={Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics},
author={Sungyong Seo* and Chuizheng Meng* and Yan Liu},
booktitle={International Conference on Learning Representations},
year={2020},
url={https://openreview.net/forum?id=r1gelyrtwH}
}
Owner
USC-Melady
USC-Melady
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems

Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems This repository is the official implementation of Rever

6 Aug 25, 2022
A parametric soroban written with CADQuery.

A parametric soroban written in CADQuery The purpose of this project is to demonstrate how "code CAD" can be intuitive to learn. See soroban.py for a

Lee 4 Aug 13, 2022
TensorFlow for Raspberry Pi

TensorFlow on Raspberry Pi It's officially supported! As of TensorFlow 1.9, Python wheels for TensorFlow are being officially supported. As such, this

Sam Abrahams 2.2k Dec 16, 2022
More than a hundred strange attractors

dysts Analyze more than a hundred chaotic systems. Basic Usage Import a model and run a simulation with default initial conditions and parameter value

William Gilpin 185 Dec 23, 2022
PyTorch wrapper for Taichi data-oriented class

Stannum PyTorch wrapper for Taichi data-oriented class PRs are welcomed, please see TODOs. Usage from stannum import Tin import torch data_oriented =

86 Dec 23, 2022
Neural implicit reconstruction experiments for the Vector Neuron paper

Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto

Congyue Deng 35 Jan 02, 2023
This repository holds the code for the paper "Deep Conditional Gaussian Mixture Model forConstrained Clustering".

Deep Conditional Gaussian Mixture Model for Constrained Clustering. This repository holds the code for the paper Deep Conditional Gaussian Mixture Mod

17 Oct 30, 2022
EfficientMPC - Efficient Model Predictive Control Implementation

efficientMPC Efficient Model Predictive Control Implementation The original algo

Vin 8 Dec 04, 2022
Code for Boundary-Aware Segmentation Network for Mobile and Web Applications

BASNet Boundary-Aware Segmentation Network for Mobile and Web Applications This repository contain implementation of BASNet in tensorflow/keras. comme

Hamid Ali 8 Nov 24, 2022
Ascend your Jupyter Notebook usage

Jupyter Ascending Sync Jupyter Notebooks from any editor About Jupyter Ascending lets you edit Jupyter notebooks from your favorite editor, then insta

Untitled AI 254 Jan 08, 2023
🌊 Online machine learning in Python

In a nutshell River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition

OnlineML 4k Jan 02, 2023
A pytorch-based deep learning framework for multi-modal 2D/3D medical image segmentation

A 3D multi-modal medical image segmentation library in PyTorch We strongly believe in open and reproducible deep learning research. Our goal is to imp

Adaloglou Nikolas 1.2k Dec 27, 2022
Pytorch implementation of VAEs for heterogeneous likelihoods.

Heterogeneous VAEs Beware: This repository is under construction 🛠️ Pytorch implementation of different VAE models to model heterogeneous data. Here,

Adrián Javaloy 35 Nov 29, 2022
Group Activity Recognition with Clustered Spatial Temporal Transformer

GroupFormer Group Activity Recognition with Clustered Spatial-TemporalTransformer Backbone Style Action Acc Activity Acc Config Download Inv3+flow+pos

28 Dec 12, 2022
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p

Yash Sharma 27 Sep 19, 2022
Crossover Learning for Fast Online Video Instance Segmentation (ICCV 2021)

TL;DR: CrossVIS (Crossover Learning for Fast Online Video Instance Segmentation) proposes a novel crossover learning paradigm to fully leverage rich c

Hust Visual Learning Team 79 Nov 25, 2022
Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation

FLAME Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation, accepted at the 17th IEEE Internation Co

Neelabh Sinha 19 Dec 17, 2022
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

Yechan Kim 8 Oct 29, 2022