Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Overview

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics

This repository is the official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics

Sungyong Seo*, Chuizheng Meng*, Yan Liu, Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics, ICLR 2020.

Data

Download the requried data.zip from Google Drive. Then,

cd /path/to/the/root/of/project
mkdir data
mv /path/to/data.zip ./data/
cd data
unzip data.zip

Environment

Docker (Recommended!)

First follow the official documents of Docker and nvidia-docker to install docker with CUDA support.

Use the following commands to build a docker image containing all necessary packages:

cd docker
bash build_docker.sh

This script will also copy the jupyter_notebook_config.py, which is the configuration file of Jupyter Notebook, into the docker image. The default password for Jupyter Notebook is 12345.

Use the following script to create a container from the built image:

bash rundocker-melady.sh

If the project directory is not under your home directory, modify rundocker-melady.sh to change the file mapping.

Manual Installation

# install python packages
pip install pyyaml tensorboardX geopy networkx tqdm
conda install pytorch==1.1.0 torchvision==0.2.2 cudatoolkit=9.0 -c pytorch
conda install -y matplotlib scipy pandas jupyter scikit-learn geopandas
conda install -y -c conda-forge jupyterlab igl meshplot

# install pytorch_geometric
export PATH=/usr/local/cuda/bin:$PATH
export CPATH=/usr/local/cuda/include:$CPATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
pip install --verbose --no-cache-dir torch-scatter==1.2.0
pip install --verbose --no-cache-dir torch-sparse==0.4.0
pip install --verbose --no-cache-dir torch-cluster==1.3.0
pip install --verbose --no-cache-dir torch-spline-conv==1.1.0
pip install torch-geometric==1.1.2

# specify numpy==1.16.2 to avoid loading error (>=1.16.3 may require allow_pickle=True in np.load)
pip install -I numpy==1.16.2 

Run

Experiments in Section 3.1 "Approximation of Directional Derivatives"

See the Jupyter Notebook approx-gradient/synthetic-gradient-approximation.ipynb for details.

Experiments in Section 3.2 "Graph Signal Prediction" and Section 4 "Prediction: Graph Signals on Land-based Weather Stations"

cd scripts
python train.py --extconf /path/to/exp/config/file --mode train --device cuda:0

Examples:

  • PA-DGN, Graph Signal Prediction of Synthetic Data
cd scripts
python train.py --extconf ../confs/iclrexps/irregular_varicoef_diff_conv_eqn_4nn_42_250sample/GraphPDE_GN_sum_notshared_4nn/conf.yaml --mode train --device cuda:0
  • PA-DGN, Prediction of Graph Signals on Land-based Weather Stations
cd scripts
python train.py --extconf ../confs/iclrexps/noaa_pt_states_withloc/GraphPDE_GN_RGN_16_notshared_4nn/conf.yaml --mode train --device cuda:0
  • PA-DGN, Sea Surface Temperature (SST) Prediction
cd scripts
python train.py --extconf ../confs/iclrexps/sst-daily_4nn_42_250sample/GraphPDE_GN_sum_notshared_4nn/conf.yaml --mode train --device cuda:0

Summary of Results

You can use results/print_results.ipynb to print tables of experiment results, including the mean value and the standard error of mean absolution error (MAE) of prediction tasks.

Reference

@inproceedings{seo*2020physicsaware,
title={Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics},
author={Sungyong Seo* and Chuizheng Meng* and Yan Liu},
booktitle={International Conference on Learning Representations},
year={2020},
url={https://openreview.net/forum?id=r1gelyrtwH}
}
Owner
USC-Melady
USC-Melady
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

International Business Machines 71 Nov 15, 2022
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022
learning and feeling SLAM together with hands-on-experiments

modern-slam-tutorial-python Learning and feeling SLAM together with hands-on-experiments 😀 😃 😆 Dependencies Most of the examples are based on GTSAM

Giseop Kim 59 Dec 22, 2022
This is a deep learning-based method to segment deep brain structures and a brain mask from T1 weighted MRI.

DBSegment This tool generates 30 deep brain structures segmentation, as well as a brain mask from T1-Weighted MRI. The whole procedure should take ~1

Luxembourg Neuroimaging (Platform OpNeuroImg) 2 Oct 25, 2022
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022
Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection, AAAI 2021.

Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection This repository is an official implementation of the AAAI 2021 paper Co-mi

MEGVII Research 20 Dec 07, 2022
PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections

HoroPCA This code is the official PyTorch implementation of the ICML 2021 paper: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projec

HazyResearch 52 Nov 14, 2022
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification

GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification This is the official pytorch implementation of t

Alibaba Cloud 5 Nov 14, 2022
Easy-to-use,Modular and Extendible package of deep-learning based CTR models .

DeepCTR DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can

浅梦 6.6k Jan 08, 2023
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de

Taimur Hassan 1 Mar 16, 2022
Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Davis Rempe 367 Dec 24, 2022
Xintao 1.4k Dec 25, 2022
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mingrui Yu 3 Jan 07, 2022
使用yolov5训练自己数据集(详细过程)并通过flask部署

使用yolov5训练自己的数据集(详细过程)并通过flask部署 依赖库 torch torchvision numpy opencv-python lxml tqdm flask pillow tensorboard matplotlib pycocotools Windows,请使用 pycoc

HB.com 19 Dec 28, 2022
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019