Demo code for paper "Learning optical flow from still images", CVPR 2021.

Overview

Depthstillation

Demo code for "Learning optical flow from still images", CVPR 2021.

[Project page] - [Paper] - [Supplementary]

This code is provided to replicate the qualitative results shown in the supplementary material, Sections 2-4. The code has been tested using Ubuntu 20.04 LTS, python 3.8 and gcc 9.3.0

Alt text

Reference

If you find this code useful, please cite our work:

@inproceedings{Aleotti_CVPR_2021,
  title     = {Learning optical flow from still images},
  author    = {Aleotti, Filippo and
               Poggi, Matteo and
               Mattoccia, Stefano},
  booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2021}
}

Contents

  1. Introduction
  2. Usage
  3. Supplementary
  4. Weights
  5. Contacts
  6. Acknowledgments

Introduction

This paper deals with the scarcity of data for training optical flow networks, highlighting the limitations of existing sources such as labeled synthetic datasets or unlabeled real videos. Specifically, we introduce a framework to generate accurate ground-truth optical flow annotations quickly and in large amounts from any readily available single real picture. Given an image, we use an off-the-shelf monocular depth estimation network to build a plausible point cloud for the observed scene. Then, we virtually move the camera in the reconstructed environment with known motion vectors and rotation angles, allowing us to synthesize both a novel view and the corresponding optical flow field connecting each pixel in the input image to the one in the new frame. When trained with our data, state-of-the-art optical flow networks achieve superior generalization to unseen real data compared to the same models trained either on annotated synthetic datasets or unlabeled videos, and better specialization if combined with synthetic images.

Usage

Install the project requirements in a new python 3 environment:

virtualenv -p python3 learning_flow_env
source learning_flow_env/bin/activate
pip install -r requirements.txt

Compile the forward_warping module, written in C (required to handle warping collisions):

cd external/forward_warping
bash compile.sh
cd ../..

You are now ready to run the depthstillation.py script:

python depthstillation.py 

By switching some parameters you can generate all the qualitatives provided in the supplementary material.

These parameters are:

  • num_motions: changes the number of virtual motions
  • segment: enables instance segmentation (for independently moving objects)
  • mask_type: mask selection. Options are H' and H
  • num_objects: sets the number of independently moving objects (one, in this example)
  • no_depth: disables monocular depth and force depth to assume a constant value
  • no_sharp: disables depth sharpening
  • change_k: uses different intrinsics K
  • change_motion: samples a different motion (ignored if num_motions greater than 1)

For instance, to simulate a different K settings, just run:

python depthstillation.py --change_k

The results are saved in dCOCO folder, organized as follows:

  • depth_color: colored depth map
  • flow: generated flow labels (in 16bit KITTI format)
  • flow_color: colored flow labels
  • H: H mask
  • H': H' mask
  • im0: real input image
  • im1: generated virtual image
  • im1_raw: generated virtual image (pre-inpainting)
  • instances_color: colored instance map (if --segment is enabled)
  • M: M mask
  • M': M' mask
  • P: P mask

We report the list of files used to depthstill dCOCO in samples/dCOCO_file_list.txt

Supplementary

We report here the list of commands to obtain, in the same order, the Figures shown in Sections 2-4 of the Supplementary Material:

  • Section 2 -- the first figure is obtained with default parameters, then we use --no_depth and --no_depth --segment respectively
  • Section 3 -- the first figure is obtained with --no_sharp, the remaining figures with default parameters or by setting --mask_type "H".
  • Section 4 -- we show three times the results obtained by default parameters, followed respectively by figures generated using --change_k, --change_motion and --segment individually.

Weights

We provide RAFT models trained in our experiments. To run them and reproduce our results, please refer to RAFT repository:

Contacts

m [dot] poggi [at] unibo [dot] it

Acknowledgments

Thanks to Clément Godard and Niantic for sharing monodepth2 code, used to simulate camera motion.

Our work is inspired by Jamie Watson et al., Learning Stereo from Single Images.

Check out the StyleGAN repo and place it in the same directory hierarchy as the present repo

Variational Model Inversion Attacks Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, Alireza Makhzani Most commands are in run_scripts. W

Jackson Wang 15 Dec 26, 2022
Finding Donors for CharityML

Finding-Donors-for-CharityML - Investigated factors that affect the likelihood of charity donations being made based on real census data.

Moamen Abdelkawy 1 Dec 30, 2021
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
Code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2021

The repo provides the code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2

Yuning Mao 18 May 24, 2022
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Julia Gusak 25 Aug 12, 2021
Pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering".

TRAnsformer Routing Networks (TRAR) This is an official implementation for ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visu

Ren Tianhe 49 Nov 10, 2022
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
The "breathing k-means" algorithm with datasets and example notebooks

The Breathing K-Means Algorithm (with examples) The Breathing K-Means is an approximation algorithm for the k-means problem that (on average) is bette

Bernd Fritzke 75 Nov 17, 2022
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
This is the code for "HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields".

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields This is the code for "HyperNeRF: A Higher-Dimensional

Google 702 Jan 02, 2023
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train

Jongheon Jeong 174 Dec 29, 2022
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022
DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection

DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection Code for our Paper DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Obje

Steven Lang 58 Dec 19, 2022
Reference code for the paper "Cross-Camera Convolutional Color Constancy" (ICCV 2021)

Cross-Camera Convolutional Color Constancy, ICCV 2021 (Oral) Mahmoud Afifi1,2, Jonathan T. Barron2, Chloe LeGendre2, Yun-Ta Tsai2, and Francois Bleibe

Mahmoud Afifi 76 Jan 07, 2023
Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks Abstract Facial expression recognition in video

Bogireddy Sai Prasanna Teja Reddy 103 Dec 29, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

Zixuan Ke 176 Jan 05, 2023
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022