Repositório criado para abrigar os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3

Overview

Curso em Vídeo - Exercícios de Python 3

Sobre o repositório

Este repositório contém os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3.

Até o presente momento, o curso possui 3 módulos chamados de Mundos. As listas de vídeos de cada um dos Mundos com as aulas teóricas e os respectivos exercícios encontra-se abaixo:

  1. Mundo 1: Fundamentos
  2. Mundo 2: Estruturas de Controle
  3. Mundo 3: Estruturas Compostas

A lista dos vídeos contendo "apenas" (são mais de 100!) os exercícios e as suas resoluções é: Exercícios de Python 3

Usando o Google Colab para fazer os exercícios

A ideia desse repositório é criar um notebook com a lista de exercícios de cada um dos Mundos do curso. Desta forma é possível importar esses notebooks para o ambiente do Google Colab e assim conseguir executar os códigos em Python sem a necessidade de uma instalação/configuração local do Python no computador.

Para isso, siga o seguinte passo a passo:

Passo 1

Copie o endereço deste repositório abaixo. Ele é o mesmo que está na barra de endereços do seu navegador conforme a Tela 1.

https://github.com/jplpereira/curso-em-video-exercicios-python

Tela 1

Passo 2

Abra o Google Colab clicando aqui. Ele vai apresentar as opções conforme a Tela 2 abaixo:

Tela 2

Passo 3

Selecione a opção GitHub, cole o link na caixa de texto e clique no botão da lupa. A lista de notebooks será atualizada. Ao lado de cada um deles, aparecerá o botão "Abrir notebook em uma nova guia" conforme a Tela 3 abaixo. Ele fará com que uma cópia do notebook selecionado seja adicionada no seu Google Drive.

Tela 3

Passo 4

O notebook vai abrir em uma nova guia do seu navegador pronto para você usar conforme a Tela 4.

Tela 4

Passo 5

Caso esteja logado com a sua conta do GitHub, clique no botão Star para ajudar esse repositório a ter mais visibilidade dentro da plataforma e chegar a mais pessoas interessadas em aprender Python.

Tela 5

Divirta-se assistindo as aulas do professor Guanabara e resolvendo os exercícios propostos. Espero que esse trabalho te ajude na sua jornada de aprendizado do Python!

Owner
João Pedro Pereira
João Pedro Pereira
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
NeuralDiff: Segmenting 3D objects that move in egocentric videos

NeuralDiff: Segmenting 3D objects that move in egocentric videos Project Page | Paper + Supplementary | Video About This repository contains the offic

Vadim Tschernezki 14 Dec 05, 2022
HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method)

Methods HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method) Dynamically selecting the best propagation method for each node

Yong 7 Dec 18, 2022
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
Neural Network Libraries

Neural Network Libraries Neural Network Libraries is a deep learning framework that is intended to be used for research, development and production. W

Sony 2.6k Dec 30, 2022
Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)

Joint-task Self-supervised Learning for Temporal Correspondence Project | Paper Overview Joint-task Self-supervised Learning for Temporal Corresponden

Sifei Liu 167 Dec 14, 2022
VOGUE: Try-On by StyleGAN Interpolation Optimization

VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples.

Wei ZHANG 66 Dec 09, 2022
A sample pytorch Implementation of ACL 2021 research paper "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE-Pytorch This repository is a pytorch version that implements Ali's ACL 2021 research paper Learning Span-Level Interactions for Aspect Senti

来自丹麦的天籁 10 Dec 06, 2022
This is the repo for Uncertainty Quantification 360 Toolkit.

UQ360 The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncert

International Business Machines 207 Dec 30, 2022
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 05, 2023
[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

FedBN: Federated Learning on Non-IID Features via Local Batch Normalization This is the PyTorch implemention of our paper FedBN: Federated Learning on

<a href=[email protected]"> 156 Dec 15, 2022
training script for space time memory network

Trainig Script for Space Time Memory Network This codebase implemented training code for Space Time Memory Network with some cyclic features. Requirem

Yuxi Li 100 Dec 20, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
Le dataset des images du projet d'IA de 2021

face-mask-dataset-ilc-2021 Le dataset des images du projet d'IA de 2021, Indiquez vos id git dans la issue pour les droits TL;DR: Choisir 200 images J

7 Nov 15, 2021