Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

Overview

Divide and Remaster Utility Tools

CFP Icon

Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

The DnR dataset is build from three, well-established, audio datasets; Librispeech, Free Music Archive (FMA), and Freesound Dataset 50k (FSD50K). We offer our dataset in both 16kHz and 44.1kHz sampling-rate along time-stamped annotations for each of the classes (genre for 'music', audio-tags for 'sound-effects', and transcription for 'speech'). We provide below more informations on how the dataset is build and what it's consists of exactly. We also go over the process of building the dataset from scratch for the cases it needs to.



Dataset Overview

The Divide and Remaster (DnR) dataset is a dataset aiming at providing research support for a relatively unexplored case of source separation with mixtures involving music, speech, and sound-effects (SFX) as their sources. The dataset is build from three, well-established, datasets. Consequently if one wants to build DnR from scratch, the aforementioned datasets will have to be downloaded first. Alternatively, DnR is also available on Zenodo

Get the DnR Dataset

In order to obtain DnR, several options are available depending on the task at hand:

Download

  • DnR-HQ (44.1kHz) is available on Zenodo at the following or simply run:
link to the Zenodo dataset coming soon ...
  • Alternatively, if DnR-16kHz is needed, please first download DnR-HQ locally. You can then downsample the dataset (either in-place or not) by cloning the dnr-utils repository and running:
python dnr_utils.py --task=downsample --inplace=True

Building DnR From Scratch

In the section, we go over the DnR building process. Since DnR is directly drawn from *FSD50K*, *LibriSpeech*/*LibriVox*, and *FMA, we first need to download these datasets. Please head to the following links for more details on how to get them:

Datasets Downloads

FSD50K
FMA-Medium Set
LibriSpeech/LibriVox



Please note that for FMA, the medium set only is required. In addition to the audio files, the metadata should also be downloaded. For LibriSpeech DnR uses dev-clean, test-clean, and train-clean-100. DnR will use the folder structure as well as metadata from LibriSpeech, but ultimately will build the LibriSpeech-HQ dataset off the original LibriVox mp3s, which is why we need them both for building DnR.

After download, all four datasets are expected to be found in the same root directory. Our root tree may look something like that. As the standardization script will look for specific file name, please make sure that all directory names conform to the ones described below:

root
├── fma-medium
│   ├── fma_metadata
│   │   ├── genres.csv
│   │   └── tracks.csv
│   ├── 008
│   ├── 008
│   ├── 009
│   └── 010
│   └── ...
├── fsd50k
│   ├── FSD50K.dev_audio
│   ├── FSD50K.eval_audio
│   └── FSD50K.ground_truth
│   │   ├── dev.csv
│   │   ├── eval.csv
│   │   └── vocabulary.csv
├── librispeech
│   ├── dev-clean
│   ├── test-clean
│   └── train-clean-100
└── librivox
    ├── 14
    ├── 16
    └── 17
    └── ...

Datasets Standardization

Once all four datasets are downloaded, some standardization work needs to be taken care of. The standardization process can be be executed by running standardization.py, which can be found in the dnr-utils repository. Prior to running the script you may want to install all the necessary dependencies included as part of the requirement.txt with pip install -r requirements.txt. Note: pydub uses ffmpeg under its hood, a system install of fmmpeg is thus required. Please see pydub's install instructions for more information. The standardization command may look something like:

python standardization.py --fsd50k-path=./FSD50K --fma-path=./FMA --librivox-path=./LibriVox --librispeech-path=./LibiSpeech  --dest-dir=./dest --validate-audio=True

DnR Dataset Compilation

Once the three resulting datasets are standardized, we are ready to finally compile DnR. At this point you should already have cloned the dnr-utils repository, which contains two key files:

  • config.py contains some configuration entries needed by the main script builder. You want to set all the appropriate paths pointing to your local datasets and ground truth files in there.
  • The compilation for a given set (here, train, val, and eval) can be executed with compile_dataset.py, for example by running the following commands for each set:
python compile_dataset.py with cfg.train
python compile_dataset.py with cfg.val
python compile_dataset.py with cfg.eval

Known Issues

Some known bugs and issues that we're aware. if not listed below, feel free to open a new issue here:

  • If building from scratch, pydub will fail at reading 15 mp3 files from the FMA medium-set and will return the following error: mp3 @ 0x559b8b084880] Failed to read frame size: Could not seek to 1026.

  • If building DnR from scratch, the script may return the following error, coming from pyloudnorm: Audio must be have length greater than the block size. That's because some audio segment, especially SFX events, may be shorter than 0.2 seconds, which is the minimum sample length (window) required by pyloudnorm for normalizing the audio. We just ignore these segments.


Contact and Support

Have an issue, concern, or question about DnR or its utility tools ? If so, please open an issue here

For any other inquiries, feel free to shoot an email at: [email protected], my name is Darius Petermann ;)


Owner
Darius Petermann
Signal Processing and Machine Learning for Audio
Darius Petermann
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

11 Aug 29, 2022
A program that can analyze videos according to the weights you select

MaskMonitor A program that can analyze videos according to the weights you select 下載 訓練完的 weight檔案 執行 MaskDetection.py 內部可更改 輸入來源(鏡頭, 影片, 圖片) 以及輸出條件(人

Patrick_star 1 Nov 07, 2021
GAN example for Keras. Cuz MNIST is too small and there should be something more realistic.

Keras-GAN-Animeface-Character GAN example for Keras. Cuz MNIST is too small and there should an example on something more realistic. Some results Trai

160 Sep 20, 2022
sense-py-AnishaBaishya created by GitHub Classroom

Compute Statistics Here we compute statistics for a bunch of numbers. This project uses the unittest framework to test functionality. Pass the tests T

1 Oct 21, 2021
Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch

Lie Transformer - Pytorch (wip) Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch. Only the SE3 version will be present in thi

Phil Wang 78 Oct 26, 2022
Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Official implementation for paper "Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR"

Ziyue Feng 72 Dec 09, 2022
I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining

I-SECRET This is the implementation of the MICCAI 2021 Paper "I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive con

13 Dec 02, 2022
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Bee Lim 625 Dec 30, 2022
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Tianhong Dai 6 Jul 18, 2022
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]

transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent

Frank Odom 27 Dec 21, 2022
KwaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%)

KuaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%) KuaiRec is a real-world dataset collected from the recommendation log

Chongming GAO (高崇铭) 70 Dec 28, 2022
Fast Soft Color Segmentation

Fast Soft Color Segmentation

3 Oct 29, 2022
Lowest memory consumption and second shortest runtime in NTIRE 2022 challenge on Efficient Super-Resolution

FMEN Lowest memory consumption and second shortest runtime in NTIRE 2022 on Efficient Super-Resolution. Our paper: Fast and Memory-Efficient Network T

33 Dec 01, 2022
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

ycj_project 1 Jan 18, 2022
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization This repository contains the code for the BBI optimizer, introduced in the p

G. Bruno De Luca 5 Sep 06, 2022
Pytorch implementation of XRD spectral identification from COD database

XRDidentifier Pytorch implementation of XRD spectral identification from COD database. Details will be explained in the paper to be submitted to NeurI

Masaki Adachi 4 Jan 07, 2023
Bayesian Optimization Library for Medical Image Segmentation.

bayesmedaug: Bayesian Optimization Library for Medical Image Segmentation. bayesmedaug optimizes your data augmentation hyperparameters for medical im

Şafak Bilici 7 Feb 10, 2022
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

28 Dec 02, 2022
ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos

ComPhy This repository holds the code for the paper. ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos, (Under review) PDF Pro

29 Dec 29, 2022