Learning nonlinear operators via DeepONet

Related tags

Deep Learningdeeponet
Overview

DeepONet: Learning nonlinear operators

DOI

The source code for the paper Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators, Nature Machine Intelligence, 2021.

System requirements

Most code is written in Python 3, and depends on the deep learning package DeepXDE. Some code is written in Matlab (version R2019a).

Installation guide

  1. Install Python 3
  2. Install DeepXDE (https://github.com/lululxvi/deepxde)
  3. Optional: For CNN, install Matlab and TensorFlow 1; for Seq2Seq, install PyTorch

The installation may take between 10 minutes and one hour.

Demo

Case Antiderivative

  1. Open deeponet_pde.py, and choose the parameters/setup in the functions main() and ode_system() based on the comments;
  2. Run deeponet_pde.py, which will first generate the two datasets (training and test) and then train a DeepONet. The training and test MSE errors will be displayed in the screen.

A standard output is

Building operator neural network...
'build' took 0.104784 s

Generating operator data...
'gen_operator_data' took 20.495655 s

Generating operator data...
'gen_operator_data' took 168.944620 s

Compiling model...
'compile' took 0.265885 s

Initializing variables...
Training model...

Step      Train loss    Test loss     Test metric
0         [1.09e+00]    [1.11e+00]    [1.06e+00]
1000      [2.57e-04]    [2.87e-04]    [2.76e-04]
2000      [8.37e-05]    [9.99e-05]    [9.62e-05]
...
50000     [9.98e-07]    [1.39e-06]    [1.09e-06]

Best model at step 46000:
  train loss: 6.30e-07
  test loss: 9.79e-07
  test metric: [7.01e-07]

'train' took 324.343075 s

Saving loss history to loss.dat ...
Saving training data to train.dat ...
Saving test data to test.dat ...
Restoring model from model/model.ckpt-46000 ...

Predicting...
'predict' took 0.056257 s

Predicting...
'predict' took 0.012670 s

Test MSE: 9.269857471315847e-07
Test MSE w/o outliers: 6.972881784590493e-07

You can get the training and test errors in the end of the output.

The run time could be between several minutes to several hours depending on the parameters you choose, e.g., the dataset size and the number of iterations for training.

Case Stochastic ODE/PDE

  1. Open sde.py, and choose the parameters/setup in the functions main();
  2. Run sde.py, which will generate traning and test datasets;
  3. Open deeponet_dataset.py, and choose the parameters/setup in the functions main();
  4. Run deeponet_dataset.py to train a DeepONet. The training and test MSE errors will be displayed in the screen.

Case 1D Caputo fractional derivative

  1. Go to the folder fractional;
  2. Run Caputo1D.m to generate training and test datasets. One can specify the orthongonal polynomial to be Legendre polynomial or poly-fractonomial in Orthogonal_polynomials.m. Expected run time: 20 mins.
  3. Run datasets.py to pack and compress the genrated datasets. Expected outputs: compressed .npz files. Expected run time: 5 mins.
  4. Run DeepONet_float32_batch.py to train and test DeepONets. Expected outputs: a figure of training and test losses. Expected run time: 1 hour.

Case 2D fractional Laplacian

Learning a 2D fractional Laplacian using DeepONets

  1. Run Fractional_Lap_2D.m to generate training and test datasets. Expected outputs: text files that store the training and test data. Expected run time: 40 mins.
  2. Run datasets.py to pack and compress the genrated datasets. Expected outputs: compressed .npz files. Expected run time: 15 mins.
  3. Run DeepONet_float32_batch.py to train and test DeepONets. Expected run time: 3 hours.

Learning a 2D fractional Laplacian using CNNs

  1. Suppose that the text files containing all training and test sets have been generated in the previous step.
  2. Run CNN_operator_alpha.py to train and test CNNs. Expected outputs: a figure of training and test losses. Expected run time: 30 mins.

Seq2Seq

  1. Open seq2seq_main.py, choose the problem in the function main(), and change the parameters/setup in the corresponding function (antiderivative()/pendulum()) if needed.
  2. Run seq2seq_main.py, which will first generate the dataset and then train the Seq2Seq model on the dataset. The training and test MSE errors will be displayed in the screen. Moreover, the loss history, generated data and trained best model will be saved in the direction ('./outputs/').

A standard output is

Training...
0             Train loss: 0.21926558017730713         Test loss: 0.22550159692764282
1000       Train loss: 0.0022761737927794456     Test loss: 0.0024939212016761303
2000       Train loss: 0.0004760705924127251     Test loss: 0.0005566366016864777
...
49000     Train loss: 1.2885914202342974e-06    Test loss: 1.999963387788739e-06
50000     Train loss: 1.1382834372852813e-06    Test loss: 1.8525416862757993e-06
Done!
'run' took 747.5421471595764 s
Best model at iteration 50000:
Train loss: 1.1382834372852813e-06 Test loss: 1.8525416862757993e-06

You can get the training and test errors in the end of the output.

The run time could be between several minutes to several hours depending on the parameters you choose, e.g., the dataset size and the number of iterations for training.

Instructions for use

The instructions for running each case are as follows.

  • Legendre transform: The same as Antiderivative in Demo. You need to modify the function main() in deeponet_pde.py.
  • Antiderivative: In Demo.
  • Fractional (1D): In Demo.
  • Fractional (2D): In Demo.
  • Nonlinear ODE: The same as Antiderivative in Demo. You need to modify the functions main() and ode_system() in deeponet_pde.py.
  • Gravity pendulum: The same as Antiderivative in Demo. You need to modify the functions main() and ode_system() in deeponet_pde.py.
  • Diffusion-reaction: The same as Antiderivative in Demo. You need to modify the function main() in deeponet_pde.py.
  • Advection: The same as Antiderivative in Demo. You need to modify the functions main() in deeponet_pde.py, run() in deeponet_pde.py, CVCSystem() in system.py, and solve_CVC() in CVC_solver.py to run each case.
  • Advection-diffusion: The same as Antiderivative in Demo. You need to modify the function main() in deeponet_pde.py.
  • Stochastic ODE/PDE: In Demo.

Questions

To get help on how to use the data or code, simply open an issue in the GitHub "Issues" section.

Comments
  • More than one input function maps to more than one output function by DeepONet

    More than one input function maps to more than one output function by DeepONet

    Hello Dr. Lu, It is very nice to get your reply. Following your answer, I think the data of the branch nets may be like this: [ u1(x1), ..., u1(xm) ] for one input function u1; [ u1(x1), ..., u1(xm), u2(x1), ..., u2(xm) ] for two input function u1 & u2. Or like this: [ u1(x1), u2(x1),..., u1(xm), u2(xm) ] ? I think the former seems to be the case. Do I have the correct understanding? I am looking forward to your reply. Thanks in advance.

    Originally posted by @WangYicunZJU in https://github.com/lululxvi/deeponet/issues/9#issuecomment-901184441

    opened by LVJIAQI777 5
  • Tests not running properly

    Tests not running properly

    Hi @lululxvi , Thanks for putting together deepxde. I was trying to get started with ODESystem but noticed a couple of things that are off. First off, here is my version info:

    In [1]: import tensorflow, deepxde
    
    In [2]: tensorflow.__version__
    Out[2]: '2.6.0'
    
    In [3]: deepxde.__version__
    Out[3]: '0.13.5'
    
    

    Now if I try to run the gravity pendulum ODE, I get a weird type mismatch error:

    ---------------------------------------------------------------------------
    TypeError                                 Traceback (most recent call last)
    <ipython-input-6-359904db8a4e> in <module>()
         47 
         48 if __name__ == "__main__":
    ---> 49     main()
    
    14 frames
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
        992           except Exception as e:  # pylint:disable=broad-except
        993             if hasattr(e, "ag_error_metadata"):
    --> 994               raise e.ag_error_metadata.to_exception(e)
        995             else:
        996               raise
    
    TypeError: in user code:
    
        /usr/local/lib/python3.7/dist-packages/deepxde/model.py:169 outputs_losses  *
            losses = self.data.losses(targets, outputs_, loss_fn, self)
        /usr/local/lib/python3.7/dist-packages/deepxde/data/triple.py:32 losses  *
            return [loss(targets, outputs)]
        /usr/local/lib/python3.7/dist-packages/deepxde/losses.py:27 mean_squared_error  *
            return bkd.reduce_mean(bkd.square(y_true - y_pred))
        /usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/math_ops.py:1383 binary_op_wrapper
            raise e
        /usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/math_ops.py:1367 binary_op_wrapper
            return func(x, y, name=name)
        /usr/local/lib/python3.7/dist-packages/tensorflow/python/util/dispatch.py:206 wrapper
            return target(*args, **kwargs)
        /usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/math_ops.py:548 subtract
            return gen_math_ops.sub(x, y, name)
        /usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/gen_math_ops.py:10654 sub
            "Sub", x=x, y=y, name=name)
        /usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/op_def_library.py:558 _apply_op_helper
            inferred_from[input_arg.type_attr]))
    
        TypeError: Input 'y' of 'Sub' Op has type float32 that does not match type float64 of argument 'x'.
    
    

    Here is the piece of code that I am trying to run (I cloned and manually appended the path to the git repo to directly import some of the submodules)

    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    
    import itertools
    
    import numpy as np
    import sys, os
    
    sys.path.append("deeponet/src/")
    
    import deepxde as dde
    from spaces import FinitePowerSeries, FiniteChebyshev, GRF
    from system import LTSystem, ODESystem, DRSystem, CVCSystem, ADVDSystem
    from utils import merge_values, trim_to_65535, mean_squared_error_outlier, safe_test
    
    def test_u_ode(nn, system, T, m, model, data, u, fname, num=100):
        """Test ODE"""
        sensors = np.linspace(0, T, num=m)[:, None]
        sensor_values = u(sensors)
        x = np.linspace(0, T, num=num)[:, None]
        X_test = [np.tile(sensor_values.T, (num, 1)), x]
        y_test = system.eval_s_func(u, x)
        if nn != "opnn":
            X_test = merge_values(X_test)
        y_pred = model.predict(data.transform_inputs(X_test))
        np.savetxt(fname, np.hstack((x, y_test, y_pred)))
        print("L2relative error:", dde.metrics.l2_relative_error(y_test, y_pred))
    
    def ode_system(T):
        """ODE"""
    
        def g(s, u, x):
            # Gravity pendulum
            k = 1
            return [s[1], -k * np.sin(s[0]) + u]
    
        s0 = [0, 0]  # Gravity pendulum
        return ODESystem(g, s0, T)
    
    def run(problem, system, space, T, m, nn, net, lr, epochs, num_train, num_test):
        # space_test = GRF(1, length_scale=0.1, N=1000, interp="cubic")
    
        X_train, y_train = system.gen_operator_data(space, m, num_train)
        X_test, y_test = system.gen_operator_data(space, m, num_test)
        if nn != "opnn":
            X_train = merge_values(X_train)
            X_test = merge_values(X_test)
    
        # np.savez_compressed("train.npz", X_train0=X_train[0], X_train1=X_train[1], y_train=y_train)
        # np.savez_compressed("test.npz", X_test0=X_test[0], X_test1=X_test[1], y_test=y_test)
        # return
    
        # d = np.load("train.npz")
        # X_train, y_train = (d["X_train0"], d["X_train1"]), d["y_train"]
        # d = np.load("test.npz")
        # X_test, y_test = (d["X_test0"], d["X_test1"]), d["y_test"]
    
        X_test_trim = trim_to_65535(X_test)[0]
        y_test_trim = trim_to_65535(y_test)[0]
        if nn == "opnn":
            data = dde.data.Triple(
                X_train=X_train, y_train=y_train, X_test=X_test_trim, y_test=y_test_trim
            )
        else:
            data = dde.data.DataSet(
                X_train=X_train, y_train=y_train, X_test=X_test_trim, y_test=y_test_trim
            )
    
        model = dde.Model(data, net)
        model.compile("adam", lr=lr, metrics=[mean_squared_error_outlier])
        checker = dde.callbacks.ModelCheckpoint(
            "model/model.ckpt", save_better_only=True, period=1000
        )
        losshistory, train_state = model.train(epochs=epochs, callbacks=[checker])
        print(
            "# Parameters:",
            np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()]),
        )
        dde.saveplot(losshistory, train_state, issave=True, isplot=True)
    
        model.restore("model/model.ckpt-" + str(train_state.best_step), verbose=1)
        safe_test(model, data, X_test, y_test)
    
        tests = [
            (lambda x: x, "x.dat"),
            (lambda x: np.sin(np.pi * x), "sinx.dat"),
            (lambda x: np.sin(2 * np.pi * x), "sin2x.dat"),
            (lambda x: x * np.sin(2 * np.pi * x), "xsin2x.dat"),
        ]
        for u, fname in tests:
            if problem == "ode":
                test_u_ode(nn, system, T, m, model, data, u, fname)
    
    def main():
        # Problems:
        # - "lt": Legendre transform
        # - "ode": Antiderivative, Nonlinear ODE, Gravity pendulum
        # - "dr": Diffusion-reaction
        # - "cvc": Advection
        # - "advd": Advection-diffusion
        problem = "ode"
        T = 1
        system = ode_system(T)
    
        # Function space
        # space = FinitePowerSeries(N=100, M=1)
        # space = FiniteChebyshev(N=20, M=1)
        # space = GRF(2, length_scale=0.2, N=2000, interp="cubic")  # "lt"
        space = GRF(1, length_scale=0.2, N=1000, interp="cubic")
        # space = GRF(T, length_scale=0.2, N=1000 * T, interp="cubic")
    
        # Hyperparameters
        m = 100
        num_train = 10000
        num_test = 100000
        lr = 0.001
        epochs = 50000
    
        # Network
        nn = "opnn"
        activation = "relu"
        initializer = "Glorot normal"  # "He normal" or "Glorot normal"
        dim_x = 1 if problem in ["ode", "lt"] else 2
        if nn == "opnn":
            net = dde.maps.DeepONetCartesianProd(
                [m, 40, 40],
                [dim_x, 40, 40],
                activation,
                initializer,
                # use_bias=True,
                # stacked=False,
            )
        elif nn == "fnn":
            net = dde.maps.FNN([m + dim_x] + [100] * 2 + [1], activation, initializer)
        elif nn == "resnet":
            net = dde.maps.ResNet(m + dim_x, 1, 128, 2, activation, initializer)
    
        run(problem, system, space, T, m, nn, net, lr, epochs, num_train, num_test)
    
    if __name__ == "__main__":
        main()
    
    

    Taking a look briefly at the exports in deepxde.nn.tensorflow I think that the Installation Guide should point to DeepONetCartesianProd and not DeepONet, right? Or am I missing anything? Now even if I make that change, the code is not runnable as is. Do you have any inputs?

    I will keep exploring the library, but it'd be great if you could clarify a bit on how to make the above snippet runnable.

    Thanks!

    opened by bhaveshshrimali 5
  • The data shape of the triplet if the number of input functions of branch nets is more than one?

    The data shape of the triplet if the number of input functions of branch nets is more than one?

    Hello: First of all, thank you very much for your excellent work! I have met a little problem. How to reshape the dataset (or change the code) if the number of input functions of branch nets is more than one? Just like G_phi in this paper("DeepM&Mnet: Inferring the electroconvection multiphysics fields..."), (c+, c-) -->phi. Or like G_rhoNO in this paper("DeepM&Mnet for hypersonics..."), (rho_N2, rho_O2) --> rho_NO. Specifically, what about the data shape of the triplet? Thanks in advance.

    opened by WangYicunZJU 4
  • Could a function of Lp space(p=2) be branch input?

    Could a function of Lp space(p=2) be branch input?

    Dear Professor.Lulu:

    As title. I notice you employ KL expansion in Learning stochastic operators, and use N eigenfunctions scaled by the eigenvalues as the input of branch net.

    My problem is about Sturm-Liouville problem, the solution is also consist of eigenfunctions and eigenvalues.

    Is that mean i should train model for the problem with different number of eigenvalues, and the input of branch net is N orthogonal functions? If there is no random process, the input of the branch net is function u of variable x, the function is sample from Lp space(p=2) .It's OK use the function u(x) instead of Fourier-Bessel expansion?

    opened by xuliang5115 3
  • How to solve 3d ode equations

    How to solve 3d ode equations

    Hi, First of all, thank you very much for your excellent work.

    In case Gravity pendulum, how do I print the predicted value of the variable s2?

    I also try to solve a 3D ode equation set, like ds1/dt=g1(x),ds2/dt=g2(x),ds3/dt=g3(x).It works very well, but only outputs the s1 in test ode function.

    Looking forward to your reply.

    Thank you very much.

    opened by ajogajog 3
  • AttributeError: 'Triple' object has no attribute 'transform_inputs'

    AttributeError: 'Triple' object has no attribute 'transform_inputs'

    Any idea how to resolve the following error? This is for the default problem = "ode" test case. Backend: tensorflow.compat.v1 TensorFlow version: 2.6.2 Thanks.

    Restoring model from model/model.ckpt-37000.ckpt ...

    Traceback (most recent call last): File "deeponet_pde.py", line 285, in main() File "deeponet_pde.py", line 281, in main run(problem, system, space, T, m, nn, net, lr, epochs, num_train, num_test) File "deeponet_pde.py", line 177, in run safe_test(model, data, X_test, y_test) File "/[HOME-PATH]/tests/deeponet/src/utils.py", line 56, in safe_test y_pred.append(model.predict(data.transform_inputs(X_add))) AttributeError: 'Triple' object has no attribute 'transform_inputs'

    opened by cfd-ai 2
  • Number of parameters in `seq2seq` scales with the length**2 of the sequence

    Number of parameters in `seq2seq` scales with the length**2 of the sequence

    https://github.com/lululxvi/deeponet/blob/44e7b5a2356b0e6e00ad101e897342a2f1e87c0b/seq2seq/learner/nn/seq2seq.py#L58-L59

    This does not seem right, considering DeepONet does not have such kind of dependence.

    https://github.com/lululxvi/deeponet/blob/44e7b5a2356b0e6e00ad101e897342a2f1e87c0b/seq2seq/learner/nn/deeponet.py#L39-L41

    opened by scaomath 1
  • How to use the trained model to predict without training?

    How to use the trained model to predict without training?

    Hello Dr. Lu, Thank you very much for putting forward this DeepONet for our study.I'm very interested in DeepONet . But now I have a problem.I spent a lot of time generating datasets and training on reaction-diffusion equations. I save the training data set and the best model after training. But how can I use this optimal model to predict the solution of the reaction-diffusion equation without training? How can I modify the code in deeponet_pde.py? Thank you very much for your time.

    opened by blackyichao 1
  • Dimension issue in generating operator

    Dimension issue in generating operator "system.py".

    Hi, First of all, thank you very much for your excellent work.

    I tried to test the dimension-match in system.py for the case of simple linear ODE with the following parameters:

    • The space that I choose is Finite Power Series with N = 100 and M = 1
    • m: the number of sensors (So I get the sensors to be an array of m-by-1) Choose m = 50
    • m_u: the number of u's ( the sample u is an array of m_u-by-m) Choose m_u = 60
    • m_y: the number of y's ( an array of m_y-by-1) Choose m_y = 40

    However, I get the dimension for s which value of G(u)(y) is an array of 40-by-1. Should this value have to be an array of (m_u * m_y)-by-1 which is in this case 2400-by-1?

    This is my modified part:

    def gen_operator_data(self,space,m, m_u, m_y):
            print("GENERATING THE DATA...", flush = True)           
            features= space.random(m_u) # build the features (m_u, N) check
            sensors = np.linspace(0, self.T, m)[:, None] # build the sensors (m,1) check 
            u = space.eval_u(features_train, sensors) # get the sample u's (m_u, m) check
            x  = self.T * np.random.rand(m_y)[:,None] # get the sample y's (m_y, 1) check
            s = self.eval_op_space(space, features, x) # get the values s'  
            Xdata = [u, x] 
            Ydata = s
            return Xdata, Ydata
    

    I look forward to hearing from you soon.

    Best Regards.

    opened by phuongle0701 1
  • input data format for OpNN

    input data format for OpNN

    Hi Lu, Thanks for your work. I am trying to make some data for OpNN training. just for clarifying, should the input data be [initial condition, position] and the label be [true value w.r.t. input]?

    opened by ChironJC 1
  • two-dimensional PDE problem of deeponet

    two-dimensional PDE problem of deeponet

    Thank you for your previous answer. The problem of model recovery has been solved. But I have another question.Can we use deeponet to solve the two-dimensional PDE problem? If so, can I input a list of X and Y in the Trunk net?

    opened by blackyichao 0
  • If the input of the trunk net could be set to be different

    If the input of the trunk net could be set to be different

    Hello Dr. Lu,

    I am Bo Chen from SJTU. We had some communication before in online conference, and I have read your code of the article"A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data". It is really wonderful work and I have learnt a lot from it.

    But it can be found that in the cases you offered, the input of the trunk net is always the same distribution for every input of the branch net so that the data can be set by "dde.data.TripleCartesianProd()" with a grid of only one distribution.

    However in my application, the input of the trunk net must be different distribution because of the data limitation of labels. This situation is just
    mentioned in your article as case I or case II ,which means different u have the different locations of ξ.

    image

    I have made same attempts but it seems that the shape of data_trunknet is fixed and hard to be changed. And I also see a type of error "ValueError("DeepONet does not support setting trunk net input.")" in the code even though I did not meet this kind of error in my attempts.

    So I wonder if there is a method of that could feed the input of the trunk net with different distribution to DEEPONET. If possible, could you give me some guidance or a simple demo is better.

    Thanks very much!

    Looking forword to your reply!

    opened by cb-sjtu 7
  • High test loss for nonlinear ODE case

    High test loss for nonlinear ODE case

    I modified both main() and ode_system() as stated in the instructions, but I get a very high test loss. Do I have to modify other functions? I also increased the number of epochs to 10^5 as pointed in the supplementary information of the cited paper (a very interesting work I have to say). Thank you in advance.

    Additional information: Modified lines (all in src/deeponet_pde.py): line 104: uncommented after having commented line 102 line 231: be sure to have problem="ode" line 260: increased epochs to 100000

    Example of output:

    Step      Train loss    Test loss     Test metric   
    0         [3.68e-01]    [1.74e+25]    [3.55e-01]    
    1000      [3.08e-03]    [1.74e+25]    [2.05e-03]    
    2000      [8.55e-04]    [1.74e+25]    [8.00e-04]    
    3000      [3.57e-04]    [1.74e+25]    [5.24e-04]    
    4000      [2.06e-04]    [1.74e+25]    [3.58e-04]    
    5000      [1.65e-04]    [1.74e+25]    [3.22e-04]    
    6000      [1.43e-04]    [1.74e+25]    [2.83e-04]    
    7000      [1.28e-04]    [1.74e+25]    [2.47e-04]    
    8000      [1.01e-04]    [1.74e+25]    [2.26e-04]    
    9000      [8.53e-05]    [1.74e+25]    [2.00e-04]    
    10000     [7.95e-05]    [1.74e+25]    [1.87e-04]    
    11000     [7.90e-05]    [1.74e+25]    [1.80e-04]    
    12000     [9.09e-05]    [1.74e+25]    [1.88e-04]    
    13000     [9.10e-05]    [1.74e+25]    [1.69e-04]    
    14000     [5.61e-05]    [1.74e+25]    [1.45e-04]    
    15000     [5.24e-05]    [1.74e+25]    [1.40e-04]    
    16000     [5.50e-05]    [1.74e+25]    [1.44e-04]    
    17000     [5.00e-05]    [1.74e+25]    [1.33e-04]    
    18000     [5.21e-05]    [1.74e+25]    [1.39e-04]    
    19000     [4.54e-05]    [1.74e+25]    [1.31e-04]    
    20000     [1.13e-04]    [1.74e+25]    [1.78e-04]    
    21000     [4.39e-05]    [1.74e+25]    [1.31e-04]    
    22000     [5.68e-05]    [1.74e+25]    [1.45e-04]    
    23000     [4.37e-05]    [1.74e+25]    [1.31e-04]    
    24000     [4.18e-05]    [1.74e+25]    [1.28e-04]    
    25000     [4.00e-05]    [1.74e+25]    [1.28e-04]    
    26000     [6.98e-05]    [1.74e+25]    [1.55e-04]    
    27000     [7.45e-05]    [1.74e+25]    [1.58e-04]    
    28000     [4.10e-05]    [1.74e+25]    [1.22e-04]    
    29000     [3.62e-05]    [1.74e+25]    [1.20e-04]    
    30000     [5.16e-05]    [1.74e+25]    [1.36e-04]    
    31000     [3.60e-05]    [1.74e+25]    [1.19e-04]    
    32000     [3.82e-05]    [1.74e+25]    [1.20e-04]    
    33000     [3.33e-05]    [1.74e+25]    [1.14e-04]    
    34000     [3.36e-05]    [1.74e+25]    [1.14e-04]    
    35000     [3.24e-05]    [1.74e+25]    [1.11e-04]    
    36000     [3.15e-05]    [1.74e+25]    [1.12e-04]    
    37000     [3.14e-05]    [1.74e+25]    [1.08e-04]    
    38000     [3.78e-05]    [1.74e+25]    [1.18e-04]    
    39000     [3.40e-05]    [1.74e+25]    [1.09e-04]    
    40000     [4.34e-05]    [1.74e+25]    [1.14e-04]    
    41000     [3.58e-05]    [1.74e+25]    [1.09e-04]    
    42000     [2.89e-05]    [1.74e+25]    [1.04e-04]    
    43000     [2.99e-05]    [1.74e+25]    [1.09e-04]    
    44000     [4.13e-05]    [1.74e+25]    [1.10e-04]    
    45000     [2.72e-05]    [1.74e+25]    [1.03e-04]    
    46000     [2.71e-05]    [1.74e+25]    [1.03e-04]    
    47000     [2.88e-05]    [1.74e+25]    [1.02e-04]    
    48000     [5.22e-05]    [1.74e+25]    [1.33e-04]    
    49000     [2.55e-05]    [1.74e+25]    [9.98e-05]    
    50000     [2.92e-05]    [1.74e+25]    [1.01e-04]    
    51000     [2.63e-05]    [1.74e+25]    [9.88e-05]    
    52000     [2.39e-05]    [1.74e+25]    [9.90e-05]    
    53000     [2.76e-05]    [1.74e+25]    [1.02e-04]    
    54000     [3.15e-05]    [1.74e+25]    [9.99e-05]    
    55000     [3.11e-05]    [1.74e+25]    [1.11e-04]    
    56000     [2.47e-05]    [1.74e+25]    [9.72e-05]    
    57000     [3.14e-05]    [1.74e+25]    [1.08e-04]    
    58000     [3.34e-05]    [1.74e+25]    [1.01e-04]    
    59000     [2.54e-05]    [1.74e+25]    [9.68e-05]    
    60000     [3.11e-05]    [1.74e+25]    [9.88e-05]    
    61000     [4.05e-05]    [1.74e+25]    [1.20e-04]    
    62000     [4.36e-05]    [1.74e+25]    [1.22e-04]    
    63000     [2.21e-05]    [1.74e+25]    [9.88e-05]    
    64000     [2.31e-05]    [1.74e+25]    [9.72e-05]    
    65000     [3.04e-05]    [1.74e+25]    [9.75e-05]    
    66000     [2.57e-05]    [1.74e+25]    [9.81e-05]    
    67000     [2.77e-05]    [1.74e+25]    [9.60e-05]    
    68000     [2.22e-05]    [1.74e+25]    [9.49e-05]    
    69000     [2.21e-05]    [1.74e+25]    [9.86e-05]    
    70000     [2.57e-05]    [1.74e+25]    [9.89e-05]    
    71000     [2.21e-05]    [1.74e+25]    [9.48e-05]    
    72000     [2.11e-05]    [1.74e+25]    [9.38e-05]    
    73000     [2.57e-05]    [1.74e+25]    [1.02e-04]    
    74000     [3.00e-05]    [1.74e+25]    [1.09e-04]    
    75000     [2.15e-05]    [1.74e+25]    [9.34e-05]    
    76000     [2.06e-05]    [1.74e+25]    [9.62e-05]    
    77000     [3.68e-05]    [1.74e+25]    [1.16e-04]    
    78000     [1.95e-05]    [1.74e+25]    [9.37e-05]    
    79000     [2.38e-05]    [1.74e+25]    [9.98e-05]    
    80000     [6.12e-05]    [1.74e+25]    [1.42e-04]    
    81000     [2.97e-05]    [1.74e+25]    [1.08e-04]    
    82000     [2.12e-05]    [1.74e+25]    [9.13e-05]    
    83000     [2.11e-05]    [1.74e+25]    [9.13e-05]    
    84000     [1.92e-05]    [1.74e+25]    [9.08e-05]    
    85000     [4.75e-05]    [1.74e+25]    [1.28e-04]    
    86000     [6.35e-05]    [1.74e+25]    [1.44e-04]    
    87000     [1.88e-05]    [1.74e+25]    [9.50e-05]    
    88000     [1.85e-05]    [1.74e+25]    [9.09e-05]    
    89000     [1.74e-05]    [1.74e+25]    [9.12e-05]    
    90000     [1.75e-05]    [1.74e+25]    [9.28e-05]    
    91000     [3.79e-05]    [1.74e+25]    [1.05e-04]    
    92000     [1.98e-05]    [1.74e+25]    [9.06e-05]    
    93000     [2.04e-05]    [1.74e+25]    [9.09e-05]    
    94000     [2.14e-05]    [1.74e+25]    [9.92e-05]    
    95000     [1.70e-05]    [1.74e+25]    [9.22e-05]    
    96000     [3.40e-05]    [1.74e+25]    [9.47e-05]    
    97000     [1.80e-05]    [1.74e+25]    [9.49e-05]    
    98000     [1.65e-05]    [1.74e+25]    [9.20e-05]    
    99000     [1.67e-05]    [1.74e+25]    [8.97e-05]    
    100000    [1.65e-05]    [1.74e+25]    [9.20e-05]    
    
    Best model at step 98000:
      train loss: 1.65e-05
      test loss: 1.74e+25
      test metric: [9.20e-05]
    
    
    opened by edoardo100 1
  • AttributeError: 'Triple' object has no attribute 'transform_inputs'

    AttributeError: 'Triple' object has no attribute 'transform_inputs'

    model.restore("model/model.ckpt-" + str(train_state.best_step) + ".ckpt", verbose=1) #model.restore("model/model.ckpt-" + str(train_state.best_step), verbose=1) safe_test(model, data, X_test, y_test)

    Saving loss history to D:\LULU\deeponet-master1\deeponet-master\src\loss.dat ... Error: The network has multiple inputs, and saving such result han't been implemented. Error: The network has multiple inputs, and plotting such result han't been implemented. Restoring model from model/model.ckpt-5000.ckpt ...

    Traceback (most recent call last): File "D:/LULU/deeponet-master1/deeponet-master/src/deeponet_pde.py", line 285, in main() File "D:\LULU/deeponet-master1/deeponet-master/src/deeponet_pde.py", line 281, in main run(problem, system, space, T, m, nn, net, lr, epochs, num_train, num_test) File "D:\LULU/deeponet-master1/deeponet-master/src/deeponet_pde.py", line 177, in run safe_test(model, data, X_test, y_test) File "D:\LULU\deeponet-master1\deeponet-master\src\utils.py", line 56, in safe_test y_pred.append(model.predict(data.transform_inputs(X_add))) AttributeError: 'Triple' object has no attribute 'transform_inputs'

    进程已结束,退出代码1

    opened by jinjunyonggzh 1
  • How DeepONet provides multiple outputs

    How DeepONet provides multiple outputs

    Professor Lu: For a complex output problem, I divided into two networks with the same structure and hyperparameters for training. The previous issue has been resolved. So, i need put model1 and model2 in two files. I use step method to reduce the dimension of Trunk net, the input of each step is the output of the two networks of the previous step. So there is a bug. I think it is necessary to train a network with two outputs at the same time. May i ask some relevant examples so i can change my code?

    opened by xuliang5115 2
  • Questions about the difference PINN and DeepXDE

    Questions about the difference PINN and DeepXDE

    Dear Prof. Lu, Thanks for your time for looking at this question.

    1. Could you tell me is the DeepXDE is one type of PINN? But I didn't find any code about using control equation to describe the loss in DeepXDE.
    2. Currently, I am solving a equations contained possion and transport equations. I want to obtain the dynamic process of the electron density change. Should I use the (x,y,t) and (E,ne,np,nn) as the input and output, respectively. Can the DeepXDE predict the extra time results without trained time data as input.
    opened by pengcz 1
  • UnicodeDecodeError: 'utf-8' codec can't decode byte 0xd5 in position 38: invalid continuation byte

    UnicodeDecodeError: 'utf-8' codec can't decode byte 0xd5 in position 38: invalid continuation byte

    Hello, professor. I have some porblem.What's the way you coded? I have the following error while running the code.

    Traceback (most recent call last): File "E:/DeepONet/deeponet-master/src/deeponet_pde.py", line 285, in main() File "E:/DeepONet/deeponet-master/src/deeponet_pde.py", line 281, in main run(problem, system, space, T, m, nn, net, lr, epochs, num_train, num_test) File "E:/DeepONet/deeponet-master/src/deeponet_pde.py", line 176, in run model.restore("model/model.ckpt-" + str(train_state.best_step), verbose=1) File "D:\ProgramData\Anaconda3\envs\donlu\lib\site-packages\deepxde\model.py", line 377, in restore self.saver.restore(self.sess, save_path) File "D:\ProgramData\Anaconda3\envs\donlu\lib\site-packages\tensorflow\python\training\saver.py", line 1289, in restore if not checkpoint_management.checkpoint_exists_internal(checkpoint_prefix): File "D:\ProgramData\Anaconda3\envs\donlu\lib\site-packages\tensorflow\python\training\checkpoint_management.py", line 383, in checkpoint_exists_internal if file_io.get_matching_files(pathname): File "D:\ProgramData\Anaconda3\envs\donlu\lib\site-packages\tensorflow\python\lib\io\file_io.py", line 350, in get_matching_files return get_matching_files_v2(filename) File "D:\ProgramData\Anaconda3\envs\donlu\lib\site-packages\tensorflow\python\lib\io\file_io.py", line 371, in get_matching_files_v2 compat.as_bytes(pattern)) UnicodeDecodeError: 'utf-8' codec can't decode byte 0xd5 in position 38: invalid continuation byte

    Process finished with exit code 1

    opened by DaJiang7 2
Releases(v1.0.0)
Owner
Lu Lu
Applied Mathematics Instructor, Massachusetts Institute of Technology
Lu Lu
Predicting Price of house by considering ,house age, Distance from public transport

House-Price-Prediction Predicting Price of house by considering ,house age, Distance from public transport, No of convenient stores around house etc..

Musab Jaleel 1 Jan 08, 2022
NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022
Block Sparse movement pruning

Movement Pruning: Adaptive Sparsity by Fine-Tuning Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; ho

Hugging Face 54 Dec 20, 2022
MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

Octave Convolution MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution Imag

Meta Research 549 Dec 28, 2022
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
🧮 Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model after All

Accompanying source code to the paper "Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model A

Florian Wilhelm 39 Dec 03, 2022
Minimalistic PyTorch training loop

Backbone for PyTorch training loop Will try to keep it minimalistic. pip install back from back import Bone Features Progress bar Checkpoints saving/l

Kashin 4 Jan 16, 2020
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 410 Jan 03, 2023
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami

ZJU3DV 1.4k Jan 04, 2023
💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022
Animal Sound Classification (Cats Vrs Dogs Audio Sentiment Classification)

this is a simple artificial neural network model using deep learning and torch-audio to classify cats and dog sounds.

crispengari 3 Dec 05, 2022
a curated list of docker-compose files prepared for testing data engineering tools, databases and open source libraries.

data-services A repository for storing various Data Engineering docker-compose files in one place. How to use it ? Set the required settings in .env f

BigData.IR 525 Dec 03, 2022
This is the source code for the experiments related to the paper Unsupervised Audio Source Separation Using Differentiable Parametric Source Models

Unsupervised Audio Source Separation Using Differentiable Parametric Source Models This is the source code for the experiments related to the paper Un

30 Oct 19, 2022
FedGS: A Federated Group Synchronization Framework Implemented by LEAF-MX.

FedGS: Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT Preparation For instructions on generating data, plea

Lizonghang 9 Dec 22, 2022
Deep Learning Pipelines for Apache Spark

Deep Learning Pipelines for Apache Spark The repo only contains HorovodRunner code for local CI and API docs. To use HorovodRunner for distributed tra

Databricks 2k Jan 08, 2023
A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

This is a simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

crispengari 3 Jan 08, 2022
Unofficial implementation of One-Shot Free-View Neural Talking Head Synthesis

face-vid2vid Usage Dataset Preparation cd datasets wget https://yt-dl.org/downloads/latest/youtube-dl -O youtube-dl chmod a+rx youtube-dl python load_

worstcoder 68 Dec 30, 2022