Source code for ZePHyR: Zero-shot Pose Hypothesis Rating @ ICRA 2021

Overview

ZePHyR: Zero-shot Pose Hypothesis Rating

ZePHyR is a zero-shot 6D object pose estimation pipeline. The core is a learned scoring function that compares the sensor observation to a sparse object rendering of each candidate pose hypothesis. We used PointNet++ as the network structure and trained and tested on YCB-V and LM-O dataset.

[ArXiv] [Project Page] [Video] [BibTex]

ZePHyR pipeline animation

Get Started

First, checkout this repo by

git clone --recurse-submodules [email protected]:r-pad/zephyr.git

Set up environment

  1. We recommend building the environment and install all required packages using Anaconda.
conda env create -n zephyr --file zephyr_env.yml
conda activate zephyr
  1. Install the required packages for compiling the C++ module
sudo apt-get install build-essential cmake libopencv-dev python-numpy
  1. Compile the c++ library for python bindings in the conda virtual environment
mkdir build
cd build
cmake .. -DPYTHON_EXECUTABLE=$(python -c "import sys; print(sys.executable)") -DPYTHON_INCLUDE_DIR=$(python -c "from distutils.sysconfig import get_python_inc; print(get_python_inc())")  -DPYTHON_LIBRARY=$(python -c "import distutils.sysconfig as sysconfig; print(sysconfig.get_config_var('LIBDIR'))")
make; make install
  1. Install the current python package
cd .. # move to the root folder of this repo
pip install -e .

Download pre-processed dataset

Download pre-processed training and testing data (ycbv_preprocessed.zip, lmo_preprocessed.zip and ppf_hypos.zip) from this Google Drive link and unzip it in the python/zephyr/data folder. The unzipped data takes around 66GB of storage in total.

The following commands need to be run in python/zephyr/ folder.

cd python/zephyr/

Example script to run the network

To use the network, an example is provided in notebooks/TestExample.ipynb. In the example script, a datapoint is loaded from LM-O dataset provided by the BOP Challenge. The pose hypotheses is provided by PPF algorithm (extracted from ppf_hypos.zip). Despite the complex dataloading code, only the following data of the observation and the model point clouds is needed to run the network:

  • img: RGB image, np.ndarray of size (H, W, 3) in np.uint8
  • depth: depth map, np.ndarray of size (H, W) in np.float, in meters
  • cam_K: camera intrinsic matrix, np.ndarray of size (3, 3) in np.float
  • model_colors: colors of model point cloud, np.ndarray of size (N, 3) in float, scaled in [0, 1]
  • model_points: xyz coordinates of model point cloud, np.ndarray of size (N, 3) in float, in meters
  • model_normals: normal vectors of mdoel point cloud, np.ndarray of size (N, 3) in float, each L2 normalized
  • pose_hypos: pose hypotheses in camera frame, np.ndarray of size (K, 4, 4) in float

Run PPF algorithm using HALCON software

The PPF algorithm we used is the surface matching function implmemented in MVTec HALCON software. HALCON provides a Python interface for programmers together with its newest versions. I wrote a simple wrapper which calls create_surface_model() and find_surface_model() to get the pose hypotheses. See notebooks/TestExample.ipynb for how to use it.

The wrapper requires the HALCON 21.05 to be installed, which is a commercial software but it provides free licenses for students.

If you don't have access to HALCON, sets of pre-estimated pose hypotheses are provided in the pre-processed dataset.

Test the network

Download the pretrained pytorch model checkpoint from this Google Drive link and unzip it in the python/zephyr/ckpts/ folder. We provide 3 checkpoints, two trained on YCB-V objects with odd ID (final_ycbv.ckpt) and even ID (final_ycbv_valodd.ckpt) respectively, and one trained on LM objects that are not in LM-O dataset (final_lmo.ckpt).

Test on YCB-V dataset

Test on the YCB-V dataset using the model trained on objects with odd ID

python test.py \
    --model_name pn2 \
    --dataset_root ./data/ycb/matches_data_test/ \
    --dataset_name ycbv \
    --dataset HSVD_diff_uv_norm \
    --no_valid_proj --no_valid_depth \
    --loss_cutoff log \
    --exp_name final \
    --resume_path ./ckpts/final_ycbv.ckpt

Test on the YCB-V dataset using the model trained on objects with even ID

python test.py \
    --model_name pn2 \
    --dataset_root ./data/ycb/matches_data_test/ \
    --dataset_name ycbv \
    --dataset HSVD_diff_uv_norm \
    --no_valid_proj --no_valid_depth \
    --loss_cutoff log \
    --exp_name final \
    --resume_path ./ckpts/final_ycbv_valodd.ckpt

Test on LM-O dataset

python test.py \
    --model_name pn2 \
    --dataset_root ./data/lmo/matches_data_test/ \
    --dataset_name lmo \
    --dataset HSVD_diff_uv_norm \
    --no_valid_proj --no_valid_depth \
    --loss_cutoff log \
    --exp_name final \
    --resume_path ./ckpts/final_lmo.ckpt

The testing results will be stored in test_logs and the results in BOP Challenge format will be in test_logs/bop_results. Please refer to bop_toolkit for converting the results to BOP Average Recall scores used in BOP challenge.

Train the network

Train on YCB-V dataset

These commands will train the network on the real-world images in the YCB-Video training set.

On object Set 1 (objects with odd ID)

python train.py \
    --model_name pn2 \
    --dataset_root ./data/ycb/matches_data_train/ \
    --dataset_name ycbv \
    --dataset HSVD_diff_uv_norm \
    --no_valid_proj --no_valid_depth \
    --loss_cutoff log \
    --exp_name final

On object Set 2 (objects with even ID)

python train.py \
    --model_name pn2 \
    --dataset_root ./data/ycb/matches_data_train/ \
    --dataset_name ycbv \
    --dataset HSVD_diff_uv_norm \
    --no_valid_proj --no_valid_depth \
    --loss_cutoff log \
    --val_obj odd \
    --exp_name final_valodd

Train on LM-O synthetic dataset

This command will train the network on the synthetic images provided by BlenderProc4BOP. We take the lm_train_pbr.zip as the training set but the network is only supervised on objects that is in Linemod but not in Linemod-Occluded (i.e. IDs for training objects are 2 3 4 7 13 14 15).

python train.py \
    --model_name pn2 \
    --dataset_root ./data/lmo/matches_data_train/ \
    --dataset_name lmo \
    --dataset HSVD_diff_uv_norm \
    --no_valid_proj --no_valid_depth \
    --loss_cutoff log \
    --exp_name final

Cite

If you find this codebase useful in your research, please consider citing:

@inproceedings{icra2021zephyr,
    title={ZePHyR: Zero-shot Pose Hypothesis Rating},
    author={Brian Okorn, Qiao Gu, Martial Hebert, David Held},
    booktitle={2021 International Conference on Robotics and Automation (ICRA)},
    year={2021}
}

Reference

Owner
R-Pad - Robots Perceiving and Doing
This is the repository for the R-Pad lab at CMU.
R-Pad - Robots Perceiving and Doing
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks Official implementation of paper Towards Practic

Xiangyu Qi 8 Dec 30, 2022
Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

A Shared Representation for Photorealistic Driving Simulators The official code for the paper: "A Shared Representation for Photorealistic Driving Sim

VITA lab at EPFL 7 Oct 13, 2022
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
Code for One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022)

One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022) Paper | Demo Requirements Python = 3.6 , Pytorch

FuxiVirtualHuman 84 Jan 03, 2023
This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

CEDR This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper

phoenix 3 Feb 27, 2022
GDSC-ML Team Interview Task

GDSC-ML-Team---Interview-Task Task 1 : Clean or Messy room In this task we have to classify the given test images as clean or messy. - Link for datase

Aayush. 1 Jan 19, 2022
An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results

EasyDatas An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results Installation pip install git+https

Ximing Yang 4 Dec 14, 2021
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21

Skeletal-GNN Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21 Various deep learning techniques have been propose

37 Oct 23, 2022
Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022
We simulate traveling back in time with a modern camera to rephotograph famous historical subjects.

[SIGGRAPH Asia 2021] Time-Travel Rephotography [Project Website] Many historical people were only ever captured by old, faded, black and white photos,

298 Jan 02, 2023
Differentiable Wavetable Synthesis

Differentiable Wavetable Synthesis

4 Feb 11, 2022
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 02, 2021
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022
code for paper"A High-precision Semantic Segmentation Method Combining Adversarial Learning and Attention Mechanism"

PyTorch implementation of UAGAN(U-net Attention Generative Adversarial Networks) This repository contains the source code for the paper "A High-precis

Tong 8 Apr 25, 2022
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022