Winning Solution in NTIRE19 Challenges on Video Restoration and Enhancement (CVPR19 Workshops) - Video Restoration with Enhanced Deformable Convolutional Networks. EDVR has been merged into BasicSR and this repo is a mirror of BasicSR.

Overview

EDVR has been merged into BasicSR. This GitHub repo is a mirror of BasicSR. Recommend to use BasicSR, and open issues, pull requests, etc in BasicSR.

Note that this version is not compatible with previous versions. If you want to use previous ones, please refer to the old_version branch.


๐Ÿš€ BasicSR

English | ็ฎ€ไฝ“ไธญๆ–‡ โ€ƒ GitHub | Gitee็ ไบ‘

google colab logo Google Colab: GitHub Link | Google Drive Link
โ“‚๏ธ Model Zoo โฌ Google Drive: Pretrained Models | Reproduced Experiments โฌ ็™พๅบฆ็ฝ‘็›˜: ้ข„่ฎญ็ปƒๆจกๅž‹ | ๅค็Žฐๅฎž้ชŒ
๐Ÿ“ Datasets โฌ Google Drive โฌ ็™พๅบฆ็ฝ‘็›˜ (ๆๅ–็ :basr)
๐Ÿ“ˆ Training curves in wandb
๐Ÿ’ป Commands for training and testing
โšก HOWTOs


BasicSR (Basic Super Restoration) is an open source image and video restoration toolbox based on PyTorch, such as super-resolution, denoise, deblurring, JPEG artifacts removal, etc.
(ESRGAN, EDVR, DNI, SFTGAN) (HandyView, HandyFigure, HandyCrawler, HandyWriting)

โœจ New Features

  • Nov 29, 2020. Add ESRGAN and DFDNet colab demo.
  • Sep 8, 2020. Add blind face restoration inference codes: DFDNet.
  • Aug 27, 2020. Add StyleGAN2 training and testing codes: StyleGAN2.
More
  • Sep 8, 2020. Add blind face restoration inference codes: DFDNet.
    ECCV20: Blind Face Restoration via Deep Multi-scale Component Dictionaries
    Xiaoming Li, Chaofeng Chen, Shangchen Zhou, Xianhui Lin, Wangmeng Zuo and Lei Zhang
  • Aug 27, 2020. Add StyleGAN2 training and testing codes.
    CVPR20: Analyzing and Improving the Image Quality of StyleGAN
    Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen and Timo Aila
  • Aug 19, 2020. A brand-new BasicSR v1.0.0 online.

โšก HOWTOs

We provides simple pipelines to train/test/inference models for quick start. These pipelines/commands cannot cover all the cases and more details are in the following sections.

GAN
StyleGAN2 Train Inference
Face Restoration
DFDNet - Inference
Super Resolution
ESRGAN TODO TODO SRGAN TODO TODO
EDSR TODO TODO SRResNet TODO TODO
RCAN TODO TODO
EDVR TODO TODO DUF - TODO
BasicVSR TODO TODO TOF - TODO
Deblurring
DeblurGANv2 - TODO
Denoise
RIDNet - TODO CBDNet - TODO

๐Ÿ”ง Dependencies and Installation

  1. Clone repo

    git clone https://github.com/xinntao/BasicSR.git
  2. Install dependent packages

    cd BasicSR
    pip install -r requirements.txt
  3. Install BasicSR

    Please run the following commands in the BasicSR root path to install BasicSR:
    (Make sure that your GCC version: gcc >= 5)
    If you do not need the cuda extensions:
    โ€ƒdcn for EDVR
    โ€ƒupfirdn2d and fused_act for StyleGAN2
    please add --no_cuda_ext when installing

    python setup.py develop --no_cuda_ext

    If you use the EDVR and StyleGAN2 model, the above cuda extensions are necessary.

    python setup.py develop

    You may also want to specify the CUDA paths:

    CUDA_HOME=/usr/local/cuda \
    CUDNN_INCLUDE_DIR=/usr/local/cuda \
    CUDNN_LIB_DIR=/usr/local/cuda \
    python setup.py develop

Note that BasicSR is only tested in Ubuntu, and may be not suitable for Windows. You may try Windows WSL with CUDA supports :-) (It is now only available for insider build with Fast ring).

โณ TODO List

Please see project boards.

๐Ÿข Dataset Preparation

  • Please refer to DatasetPreparation.md for more details.
  • The descriptions of currently supported datasets (torch.utils.data.Dataset classes) are in Datasets.md.

๐Ÿ’ป Train and Test

  • Training and testing commands: Please see TrainTest.md for the basic usage.
  • Options/Configs: Please refer to Config.md.
  • Logging: Please refer to Logging.md.

๐Ÿฐ Model Zoo and Baselines

  • The descriptions of currently supported models are in Models.md.
  • Pre-trained models and log examples are available in ModelZoo.md.
  • We also provide training curves in wandb:

๐Ÿ“ Codebase Designs and Conventions

Please see DesignConvention.md for the designs and conventions of the BasicSR codebase.
The figure below shows the overall framework. More descriptions for each component:
Datasets.mdโ€ƒ|โ€ƒModels.mdโ€ƒ|โ€ƒConfig.mdโ€ƒ|โ€ƒLogging.md

overall_structure

๐Ÿ“œ License and Acknowledgement

This project is released under the Apache 2.0 license.
More details about license and acknowledgement are in LICENSE.

๐ŸŒ Citations

If BasicSR helps your research or work, please consider citing BasicSR.
The following is a BibTeX reference. The BibTeX entry requires the url LaTeX package.

@misc{wang2020basicsr,
  author =       {Xintao Wang and Ke Yu and Kelvin C.K. Chan and
                  Chao Dong and Chen Change Loy},
  title =        {BasicSR},
  howpublished = {\url{https://github.com/xinntao/BasicSR}},
  year =         {2020}
}

Xintao Wang, Ke Yu, Kelvin C.K. Chan, Chao Dong and Chen Change Loy. BasicSR. https://github.com/xinntao/BasicSR, 2020.

๐Ÿ“ง Contact

If you have any question, please email [email protected].

Owner
Xintao
Researcher at Tencent ARC Lab, (Applied Research Center)
Xintao
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

โ€ƒโ€ƒโ€ƒ VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai

Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks an

Aman Chadha 1.7k Jan 08, 2023
Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch

Reminder ST-GCN has transferred to MMSkeleton, and keep on developing as an flexible open source toolbox for skeleton-based human understanding. You a

sijie yan 1.1k Dec 25, 2022
Official implementation of VQ-Diffusion

Official implementation of VQ-Diffusion: Vector Quantized Diffusion Model for Text-to-Image Synthesis

Microsoft 592 Jan 03, 2023
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Attention Walk โ €โ € A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth

Benedek Rozemberczki 303 Dec 09, 2022
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:

Kuang-Jui Hsu 139 Dec 22, 2022
Evaluating Cross-lingual Sentence Representations

XNLI: The Cross-Lingual NLI Corpus XNLI is an evaluation corpus for language transfer and cross-lingual sentence classification in 15 languages. New:

Meta Research 395 Dec 19, 2022
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items This repository co

Taimur Hassan 3 Mar 16, 2022
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
TargetAllDomainObjects - A python wrapper to run a command on against all users/computers/DCs of a Windows Domain

TargetAllDomainObjects A python wrapper to run a command on against all users/co

Podalirius 19 Dec 13, 2022
The implementation of FOLD-R++ algorithm

FOLD-R-PP The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task. Inst

13 Dec 23, 2022
Baseline inference Algorithm for the STOIC2021 challenge.

STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme

Luuk Boulogne 10 Aug 08, 2022
This is the source code for generating the ASL-Skeleton3D and ASL-Phono datasets. Check out the README.md for more details.

ASL-Skeleton3D and ASL-Phono Datasets Generator The ASL-Skeleton3D contains a representation based on mapping into the three-dimensional space the coo

Cleison Amorim 5 Nov 20, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
Official implementation of VQ-Diffusion

Vector Quantized Diffusion Model for Text-to-Image Synthesis Overview This is the official repo for the paper: [Vector Quantized Diffusion Model for T

Microsoft 592 Jan 03, 2023
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

LA-MCTS The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. Component LA-MCTS has thr

Meta Research 18 Oct 24, 2022