[SIGGRAPH Asia 2021] Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN

Overview

Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN

[Paper] [Project Website] [Output resutls]

Official Pytorch implementation for Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN. Please contact Badour AlBahar ([email protected]) if you have any questions.

Requirements

conda create -n posewithstyle python=3.6
conda activate posewithstyle
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt

Intall openCV using conda install -c conda-forge opencv or pip install opencv-python. If you would like to use wandb, install it using pip install wandb.

Download pretrained models

You can download the pretrained model here, and the pretrained coordinate completion model here.

Note: we also provide the pretrained model trained on StylePoseGAN [Sarkar et al. 2021] DeepFashion train/test split here. We also provide this split's pretrained coordinate completion model here.

Reposing

Download the UV space - 2D look up map and save it in util folder.

We provide sample data in data directory. The output will be saved in data/output directory.

python inference.py --input_path ./data --CCM_pretrained_model path/to/CCM_epoch50.pt --pretrained_model path/to/posewithstyle.pt

To repose your own images you need to put the input image (input_name+'.png'), dense pose (input_name+'_iuv.png'), and silhouette (input_name+'_sil.png'), as well as the target dense pose (target_name+'_iuv.png') in data directory.

python inference.py --input_path ./data --input_name fashionWOMENDressesid0000262902_3back --target_name fashionWOMENDressesid0000262902_1front --CCM_pretrained_model path/to/CCM_epoch50.pt --pretrained_model path/to/posewithstyle.pt

Garment transfer

Download the UV space - 2D look up map and the UV space body part segmentation. Save both in util folder. The UV space body part segmentation will provide a generic segmentation of the human body. Alternatively, you can specify your own mask of the region you want to transfer.

We provide sample data in data directory. The output will be saved in data/output directory.

python garment_transfer.py --input_path ./data --CCM_pretrained_model path/to/CCM_epoch50.pt --pretrained_model path/to/posewithstyle.pt --part upper_body

To use your own images you need to put the input image (input_name+'.png'), dense pose (input_name+'_iuv.png'), and silhouette (input_name+'_sil.png'), as well as the garment source target image (target_name+'.png'), dense pose (target_name+'_iuv.png'), and silhouette (target_name+'_sil.png') in data directory. You can specify the part to be transferred using --part as upper_body, lower_body, or face. The output as well as the part transferred (shown in red) will be saved in data/output directory.

python garment_transfer.py --input_path ./data --input_name fashionWOMENSkirtsid0000177102_1front --target_name fashionWOMENBlouses_Shirtsid0000635004_1front --CCM_pretrained_model path/to/CCM_epoch50.pt --pretrained_model path/to/posewithstyle.pt --part upper_body

DeepFashion Dataset

To train or test, you must download and process the dataset. Please follow instructions in Dataset and Downloads.

You should have the following downloaded in your DATASET folder:

DATASET/DeepFashion_highres
 - train
 - test
 - tools
   - train.lst
   - test.lst
   - fashion-pairs-train.csv
   - fashion-pairs-test.csv

DATASET/densepose
 - train
 - test

DATASET/silhouette
 - train
 - test

DATASET/partial_coordinates
 - train
 - test

DATASET/complete_coordinates
 - train
 - test

DATASET/resources
 - train_face_T.pickle
 - sphere20a_20171020.pth

Training

Step 1: First, train the reposing model by focusing on generating the foreground. We set the batch size to 1 and train for 50 epochs. This training process takes around 7 days on 8 NVIDIA 2080 Ti GPUs.

python -m torch.distributed.launch --nproc_per_node=8 --master_port XXXX train.py --batch 1 /path/to/DATASET --name exp_name_step1 --size 512 --faceloss --epoch 50

The checkpoints will be saved in checkpoint/exp_name.

Step 2: Then, finetune the model by training on the entire image (only masking the padded boundary). We set the batch size to 8 and train for 10 epochs. This training process takes less than 2 days on 2 A100 GPUs.

python -m torch.distributed.launch --nproc_per_node=2 --master_port XXXX train.py --batch 8 /path/to/DATASET --name exp_name_step2 --size 512 --faceloss --epoch 10 --ckpt /path/to/step1/pretrained/model --finetune

Testing

To test the reposing model and generate the reposing results:

python test.py /path/to/DATASET --pretrained_model /path/to/step2/pretrained/model --size 512 --save_path /path/to/save/output

Output images will be saved in --save_path.

You can find our reposing output images here.

Evaluation

We follow the same evaluation code as Global-Flow-Local-Attention.

Bibtex

Please consider citing our work if you find it useful for your research:

@article{albahar2021pose,
    title   = {Pose with {S}tyle: {D}etail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN},
  author  = {AlBahar, Badour and Lu, Jingwan and Yang, Jimei and Shu, Zhixin and Shechtman, Eli and Huang, Jia-Bin},
    journal = {ACM Transactions on Graphics},
  year    = {2021}
}

Acknowledgments

This code is heavily borrowed from Rosinality: StyleGAN 2 in PyTorch.

[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Counterfactual VQA (CF-VQA) This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in C

Yulei Niu 94 Dec 03, 2022
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
This is an easy python software which allows to sort images with faces by gender and after by age.

Gender-age Classifier This is an easy python software which allows to sort images with faces by gender and after by age. Usage First install Deepface

Claudio Ciccarone 6 Sep 17, 2022
This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Arun Verma 1 Nov 09, 2021
scikit-learn inspired API for CRFsuite

sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides interface simlar to scikit-learn. sklearn_crfsuite.CRF i

417 Dec 20, 2022
An introduction to bioimage analysis - http://bioimagebook.github.io

Introduction to Bioimage Analysis This book tries explain the main ideas of image analysis in a practical and engaging way. It's written primarily for

Bioimage Book 20 Nov 28, 2022
Code Repo for the ACL21 paper "Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning"

Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning This is the Github repository of our paper, "Common S

INK Lab @ USC 19 Nov 30, 2022
Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

CLIP-Guided-Diffusion Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab. Original colab notebooks by Ka

Nerdy Rodent 336 Dec 09, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
Content shared at DS-OX Meetup

Streamlit-Projects Streamlit projects available in this repo: An introduction to Streamlit presented at DS-OX (Feb 26, 2020) meetup Streamlit 101 - Ja

Arvindra 69 Dec 23, 2022
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022
Automatic learning-rate scheduler

AutoLRS This is the PyTorch code implementation for the paper AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly published

Yuchen Jin 33 Nov 18, 2022
Riemannian Geometry for Molecular Surface Approximation (RGMolSA)

Riemannian Geometry for Molecular Surface Approximation (RGMolSA) Introduction Ligand-based virtual screening aims to reduce the cost and duration of

11 Nov 15, 2022
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.

Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥

AI4Finance 2.5k Jan 08, 2023
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
ISBI 2022: Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image.

Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Introduction This repository contains the PyTorch implem

25 Nov 09, 2022
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation.

ISL This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation, which is accepted

19 May 04, 2022