Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

Related tags

Deep LearningSSAN
Overview

SSAN

Introduction

This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).
SSAN (Structured Self-Attention Network) is a novel extension of Transformer to effectively incorporate structural dependencies between input elements. And in the scenerio of document-level relation extraction, we consider the structure of entities. Specificly, we propose a transformation module, that produces attentive biases based on the structure prior so as to adaptively regularize the attention flow within and throughout the encoding stage. We achieve SOTA results on several document-level relation extraction tasks.
This implementation is adapted based on huggingface transformers, the key revision is how we extend the vanilla self-attention of Transformers, you can find the SSAN model details in ./model/modeling_bert.py#L267-L280. You can also find our paddlepaddle implementation in here.

Tagging Strategy

Requirements

  • python3.6, transformers==2.7.0
  • This implementation is tested on a single 32G V100 GPU with CUDA version=10.2 and Driver version=440.33.01.

Prepare Model and Dataset

  • Download pretrained models into ./pretrained_lm. For example, if you want to reproduce the results based on RoBERTa Base, you can download and keep the model files as:
    pretrained_lm
    └─── roberta_base
         ├── pytorch_model.bin
         ├── vocab.json
         ├── config.json
         └── merges.txt

Note that these files should correspond to huggingface transformers of version 2.7.0. Or the code will automatically download from s3 into your --cache_dir.

  • Download DocRED dataset into ./data, including train_annotated.json, dev.json and test.json.

Train

  • Choose your model and config the script:
    Choose --model_type from [roberta, bert], choose --entity_structure from [none, decomp, biaffine]. For SciBERT, you should set --model_type as bert, and then add do_lower_case action.
  • Then run training script:
sh train.sh

checkpoints will be saved into ./checkpoints, and the best threshold for relation prediction will be searched on dev set and printed when evaluation.

Predict

Set --checkpoint and --predict_thresh then run script:

sh predict.sh

The result will be saved as ${checkpoint}/result.json.
You can compress and upload it to the official competition leaderboard at CodaLab.

zip result.zip result.json

Citation (Arxiv version, waiting for the official proceeding.)

If you use any source code included in this project in your work, please cite the following paper:

@misc{xu2021entity,
      title={Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction}, 
      author={Benfeng Xu and Quan Wang and Yajuan Lyu and Yong Zhu and Zhendong Mao},
      year={2021},
      eprint={2102.10249},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022
3D Avatar Lip Syncronization from speech (JALI based face-rigging)

visemenet-inference Inference Demo of "VisemeNet-tensorflow" VisemeNet is an audio-driven animator centric speech animation driving a JALI or standard

Junhwan Jang 17 Dec 20, 2022
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX

The goal of Project CodeNet is to provide the AI-for-Code research community with a large scale, diverse, and high quality curated dataset to drive innovation in AI techniques.

International Business Machines 1.2k Jan 04, 2023
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021
The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 01, 2023
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
Train a state-of-the-art yolov3 object detector from scratch!

TrainYourOwnYOLO: Building a Custom Object Detector from Scratch This repo let's you train a custom image detector using the state-of-the-art YOLOv3 c

AntonMu 616 Jan 08, 2023
Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)

Joint-task Self-supervised Learning for Temporal Correspondence Project | Paper Overview Joint-task Self-supervised Learning for Temporal Corresponden

Sifei Liu 167 Dec 14, 2022
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
Benchmark for evaluating open-ended generation

OpenMEVA Contributed by Jian Guan, Zhexin Zhang. Thank Jiaxin Wen for DeBugging. OpenMEVA is a benchmark for evaluating open-ended story generation me

25 Nov 15, 2022
Sandbox for training deep learning networks

Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (

Oleg Sémery 2.7k Jan 01, 2023
Pytorch Implementation of paper "Noisy Natural Gradient as Variational Inference"

Noisy Natural Gradient as Variational Inference PyTorch implementation of Noisy Natural Gradient as Variational Inference. Requirements Python 3 Pytor

Tony JiHyun Kim 119 Dec 02, 2022
Lua-parser-lark - An out-of-box Lua parser written in Lark

An out-of-box Lua parser written in Lark Such parser handles a relaxed version o

Taine Zhao 2 Jul 19, 2022
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Akari Asai 59 Dec 28, 2022
LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation Table of Contents: Introduction Project Structure Installation Datas

Yu Wang 492 Dec 02, 2022
A tool to visualise the results of AlphaFold2 and inspect the quality of structural predictions

AlphaFold Analyser This program produces high quality visualisations of predicted structures produced by AlphaFold. These visualisations allow the use

Oliver Powell 3 Nov 13, 2022