Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

Related tags

Deep LearningSSAN
Overview

SSAN

Introduction

This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).
SSAN (Structured Self-Attention Network) is a novel extension of Transformer to effectively incorporate structural dependencies between input elements. And in the scenerio of document-level relation extraction, we consider the structure of entities. Specificly, we propose a transformation module, that produces attentive biases based on the structure prior so as to adaptively regularize the attention flow within and throughout the encoding stage. We achieve SOTA results on several document-level relation extraction tasks.
This implementation is adapted based on huggingface transformers, the key revision is how we extend the vanilla self-attention of Transformers, you can find the SSAN model details in ./model/modeling_bert.py#L267-L280. You can also find our paddlepaddle implementation in here.

Tagging Strategy

Requirements

  • python3.6, transformers==2.7.0
  • This implementation is tested on a single 32G V100 GPU with CUDA version=10.2 and Driver version=440.33.01.

Prepare Model and Dataset

  • Download pretrained models into ./pretrained_lm. For example, if you want to reproduce the results based on RoBERTa Base, you can download and keep the model files as:
    pretrained_lm
    └─── roberta_base
         ├── pytorch_model.bin
         ├── vocab.json
         ├── config.json
         └── merges.txt

Note that these files should correspond to huggingface transformers of version 2.7.0. Or the code will automatically download from s3 into your --cache_dir.

  • Download DocRED dataset into ./data, including train_annotated.json, dev.json and test.json.

Train

  • Choose your model and config the script:
    Choose --model_type from [roberta, bert], choose --entity_structure from [none, decomp, biaffine]. For SciBERT, you should set --model_type as bert, and then add do_lower_case action.
  • Then run training script:
sh train.sh

checkpoints will be saved into ./checkpoints, and the best threshold for relation prediction will be searched on dev set and printed when evaluation.

Predict

Set --checkpoint and --predict_thresh then run script:

sh predict.sh

The result will be saved as ${checkpoint}/result.json.
You can compress and upload it to the official competition leaderboard at CodaLab.

zip result.zip result.json

Citation (Arxiv version, waiting for the official proceeding.)

If you use any source code included in this project in your work, please cite the following paper:

@misc{xu2021entity,
      title={Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction}, 
      author={Benfeng Xu and Quan Wang and Yajuan Lyu and Yong Zhu and Zhendong Mao},
      year={2021},
      eprint={2102.10249},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching

Edge-Selective Feature Weaving for Point Cloud Matching This repository contains a PyTorch-lightning implementation of the ESFW module proposed in our

5 Feb 14, 2022
HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method)

Methods HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method) Dynamically selecting the best propagation method for each node

Yong 7 Dec 18, 2022
Reproduction process of AlexNet

PaddlePaddle论文复现杂谈 背景 注:该repo基于PaddlePaddle,对AlexNet进行复现。时间仓促,难免有所疏漏,如果问题或者想法,欢迎随时提issue一块交流。 飞桨论文复现赛地址:https://aistudio.baidu.com/aistudio/competitio

19 Nov 29, 2022
SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments.

SciKit-Learn Laboratory This Python package provides command-line utilities to make it easier to run machine learning experiments with scikit-learn. O

ETS 528 Nov 25, 2022
Equivariant Imaging: Learning Beyond the Range Space

[Project] Equivariant Imaging: Learning Beyond the Range Space Project about the

Georges Le Bellier 3 Feb 06, 2022
Parallel Latent Tree-Induction for Faster Sequence Encoding

FastTrees This repository contains the experimental code supporting the FastTrees paper by Bill Pung. Software Requirements Python 3.6, NLTK and PyTor

Bill Pung 4 Mar 29, 2022
UT-Sarulab MOS prediction system using SSL models

UTMOS: UTokyo-SaruLab MOS Prediction System Official implementation of "UTMOS: UTokyo-SaruLab System for VoiceMOS Challenge 2022" submitted to INTERSP

sarulab-speech 58 Nov 22, 2022
Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Davis Rempe 367 Dec 24, 2022
Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Bowen XU 11 Dec 20, 2022
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the

Philip Huang 270 Dec 14, 2022
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
multimodal transformer

This repo holds the code to perform experiments with the multimodal autoregressive probabilistic model Transflower. Overview of the repo It is structu

Guillermo Valle 68 Dec 13, 2022
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022
A Pytorch implement of paper "Anomaly detection in dynamic graphs via transformer" (TADDY).

TADDY: Anomaly detection in dynamic graphs via transformer This repo covers an reference implementation for the paper "Anomaly detection in dynamic gr

Yue Tan 21 Nov 24, 2022
[ACMMM 2021 Oral] Enhanced Invertible Encoding for Learned Image Compression

InvCompress Official Pytorch Implementation for "Enhanced Invertible Encoding for Learned Image Compression", ACMMM 2021 (Oral) Figure: Our framework

96 Nov 30, 2022
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022
A Keras implementation of YOLOv4 (Tensorflow backend)

keras-yolo4 请使用更完善的版本: https://github.com/miemie2013/Keras-YOLOv4 Please visit here for more complete model: https://github.com/miemie2013/Keras-YOLOv

384 Nov 29, 2022
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
Code/data of the paper "Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction" (BMVC2021)

Hand-Object Contact Prediction (BMVC2021) This repository contains the code and data for the paper "Hand-Object Contact Prediction via Motion-Based Ps

Takuma Yagi 13 Nov 07, 2022
A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

24 Dec 13, 2022