Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

Related tags

Deep LearningSSAN
Overview

SSAN

Introduction

This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).
SSAN (Structured Self-Attention Network) is a novel extension of Transformer to effectively incorporate structural dependencies between input elements. And in the scenerio of document-level relation extraction, we consider the structure of entities. Specificly, we propose a transformation module, that produces attentive biases based on the structure prior so as to adaptively regularize the attention flow within and throughout the encoding stage. We achieve SOTA results on several document-level relation extraction tasks.
This implementation is adapted based on huggingface transformers, the key revision is how we extend the vanilla self-attention of Transformers, you can find the SSAN model details in ./model/modeling_bert.py#L267-L280. You can also find our paddlepaddle implementation in here.

Tagging Strategy

Requirements

  • python3.6, transformers==2.7.0
  • This implementation is tested on a single 32G V100 GPU with CUDA version=10.2 and Driver version=440.33.01.

Prepare Model and Dataset

  • Download pretrained models into ./pretrained_lm. For example, if you want to reproduce the results based on RoBERTa Base, you can download and keep the model files as:
    pretrained_lm
    └─── roberta_base
         ├── pytorch_model.bin
         ├── vocab.json
         ├── config.json
         └── merges.txt

Note that these files should correspond to huggingface transformers of version 2.7.0. Or the code will automatically download from s3 into your --cache_dir.

  • Download DocRED dataset into ./data, including train_annotated.json, dev.json and test.json.

Train

  • Choose your model and config the script:
    Choose --model_type from [roberta, bert], choose --entity_structure from [none, decomp, biaffine]. For SciBERT, you should set --model_type as bert, and then add do_lower_case action.
  • Then run training script:
sh train.sh

checkpoints will be saved into ./checkpoints, and the best threshold for relation prediction will be searched on dev set and printed when evaluation.

Predict

Set --checkpoint and --predict_thresh then run script:

sh predict.sh

The result will be saved as ${checkpoint}/result.json.
You can compress and upload it to the official competition leaderboard at CodaLab.

zip result.zip result.json

Citation (Arxiv version, waiting for the official proceeding.)

If you use any source code included in this project in your work, please cite the following paper:

@misc{xu2021entity,
      title={Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction}, 
      author={Benfeng Xu and Quan Wang and Yajuan Lyu and Yong Zhu and Zhendong Mao},
      year={2021},
      eprint={2102.10249},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
Fast, flexible and fun neural networks.

Brainstorm Discontinuation Notice Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as

IDSIA 1.3k Nov 21, 2022
Inferred Model-based Fuzzer

IMF: Inferred Model-based Fuzzer IMF is a kernel API fuzzer that leverages an automated API model inferrence techinque proposed in our paper at CCS. I

SoftSec Lab 104 Sep 28, 2022
Program your own vulkan.gpuinfo.org query in Python. Used to determine baseline hardware for WebGPU.

query-gpuinfo-data License This software is not presently released under a license. The data in data/ is obtained under CC BY 4.0 as specified there.

Kai Ninomiya 5 Jul 18, 2022
🔥 Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful too

Cogitare - Modern and Easy Deep Learning with Python 76 Sep 30, 2022
Athena is the only tool that you will ever need to optimize your portfolio.

Athena Portfolio optimization is the process of selecting the best portfolio (asset distribution), out of the set of all portfolios being considered,

Indrajit 1 Mar 25, 2022
Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021

ACTOR Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021. Please visit our we

Mathis Petrovich 248 Dec 23, 2022
Code for the paper "Attention Approximates Sparse Distributed Memory"

Attention Approximates Sparse Distributed Memory - Codebase This is all of the code used to run analyses in the paper "Attention Approximates Sparse D

Trenton Bricken 14 Dec 05, 2022
A Unified Generative Framework for Various NER Subtasks.

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks. Install the package in the requirements.txt, then u

177 Jan 05, 2023
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
Roger Labbe 13k Dec 29, 2022
Super Pix Adv - Offical implemention of Robust Superpixel-Guided Attentional Adversarial Attack (CVPR2020)

Super_Pix_Adv Offical implemention of Robust Superpixel-Guided Attentional Adver

DLight 8 Oct 26, 2022
This is a project based on ConvNets used to identify whether a road is clean or dirty. We have used MobileNet as our base architecture and the weights are based on imagenet.

PROJECT TITLE: CLEAN/DIRTY ROAD DETECTION USING TRANSFER LEARNING Description: This is a project based on ConvNets used to identify whether a road is

Faizal Karim 3 Nov 06, 2022
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
Resources for the "Evaluating the Factual Consistency of Abstractive Text Summarization" paper

Evaluating the Factual Consistency of Abstractive Text Summarization Authors: Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher Int

Salesforce 165 Dec 21, 2022
A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

CapsGNN ⠀⠀ A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019). Abstract The high-quality node embeddings learned from the Graph Neur

Benedek Rozemberczki 1.2k Jan 02, 2023
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022