Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

Overview

LinkedIn Contributors Forks Stargazers Issues GNU v3 License


Logo

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

Published on DOI: https://doi.org/10.5753/eniac.2020.12128

View Paper · Report Bug · Request Feature

About The Paper

Data classification is a major machine learning paradigm, which has been widely applied to solve a large number of real-world problems. Traditional data classification techniques consider only physical features (e.g., distance, similarity, or distribution) of the input data. For this reason, those are called low-level classification. On the other hand, the human (animal) brain performs both low and high orders of learning, and it has a facility in identifying pat-terns according to the semantic meaning of the input data. Data classification that considers not only physical attributes but also the pattern formation is referred to as high-level classification. Several high-level classification techniques have been developed, which make use of complex networks to characterize data patterns and have obtained promising results. In this paper, we propose a pure network-based high-level classification technique that uses the betweenness centrality measure. We test this model in nine different real datasets and compare it with other nine traditional and well-known classification models. The results show us a competent classification performance. Netwokrs

(back to top)

Built With

This project was builded with the next technologies.

(back to top)

Getting Started

Prerequisites

You need the next componenets to run this project.

  • Docker. To install it follow these steps Click. On Ubuntu, you can run:
sudo apt-get install docker-ce docker-ce-cli containerd.io
  • Visual Studio Code. To install it follow these steps Click. On Ubuntu, you can run:
sudo snap install code --classic
  • Install the visual studio code extension "Remote - Containers"

Installation

Follow the next steps:

  1. Run the visual studio code.
  2. Open the folder where you clone the repository.
  3. Click on the green button with this symbol in the bottom left of visual studio code "><".
  4. Click on reopen in a container.
  5. Execute "main.py".

(back to top)

Usage

You can use the HLNB_BC as a classifier of scikit-learn. Just need train and predict.

classifier = HLNB_BC()
classifier.fit(dataset["data"], dataset["target"])
classifier.predict(dataset_test["data"])

License

Distributed under the GNU v3 License. See LICENSE for more information.

(back to top)

Contact

Esteban Vilca - @ds_estebanvz - [email protected]

Project Link: https://github.com/estebanvz/hl_classification_bc

(back to top)

Owner
Esteban Vilca
My name is Esteban Vilca. I focused on data science. Transform data into valuable information for companies is my passion.
Esteban Vilca
Synthesizing Long-Term 3D Human Motion and Interaction in 3D in CVPR2021

Long-term-Motion-in-3D-Scenes This is an implementation of the CVPR'21 paper "Synthesizing Long-Term 3D Human Motion and Interaction in 3D". Please ch

Jiashun Wang 61 Feb 07, 2022
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 639 Jan 26, 2022
Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom

Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom Sample on-line plotting while training(avg loss)/testing(writ

Jingwei Zhang 269 Jan 21, 2022
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 40 Jan 23, 2022
MassiveSumm: a very large-scale, very multilingual, news summarisation dataset

MassiveSumm: a very large-scale, very multilingual, news summarisation dataset This repository contains links to data and code to fetch and reproduce

Daniel Varab 12 Jan 27, 2022
A Tensorfflow implementation of Attend, Infer, Repeat

Attend, Infer, Repeat: Fast Scene Understanding with Generative Models This is an unofficial Tensorflow implementation of Attend, Infear, Repeat (AIR)

Adam Kosiorek 82 Jan 08, 2022
A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets

HOW TO USE THIS PROJECT A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets Based on DeepLabCut toolbox, we run wit

1 Jan 09, 2022
This repository introduces a short project about Transfer Learning for Classification of MRI Images.

Transfer Learning for MRI Images Classification This repository introduces a short project made during my stay at Neuromatch Summer School 2021. This

Oscar Guarnizo 1 Jan 12, 2022
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

65 Jan 12, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 10 Feb 08, 2022
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 814 Feb 02, 2022
UIUCTF 2021 Public Challenge Repository

UIUCTF-2021-Public UIUCTF 2021 Public Challenge Repository Notes: every challenge folder contains a challenge.yml file in the format for ctfcli, CTFd'

SIGPwny 13 Dec 18, 2021
Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

GPflow 245 Jan 10, 2022
This application explain how we can easily integrate Deepface framework with Python Django application

deepface_suite This application explain how we can easily integrate Deepface framework with Python Django application install redis cache install requ

Mohamed Naji Aboo 2 Nov 30, 2021
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 22 Jan 14, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 11 Jan 10, 2022
Framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample resolution

Sample-specific Bayesian Networks A framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample or per-patient re

Caleb Ellington 1 Nov 02, 2021
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"

Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with

Aparna Aketi 0 Nov 22, 2021
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution Figure: Example visualization of the method and baseline as a

Oliver Hahn 1 Jan 20, 2022
CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA - Counterfactual And Recourse Library CARLA is a python library to benchmark counterfactual explanation and recourse models. It comes out-of-the

Carla Recourse 146 Jan 19, 2022