Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

Overview

LinkedIn Contributors Forks Stargazers Issues GNU v3 License


Logo

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

Published on DOI: https://doi.org/10.5753/eniac.2020.12128

View Paper · Report Bug · Request Feature

About The Paper

Data classification is a major machine learning paradigm, which has been widely applied to solve a large number of real-world problems. Traditional data classification techniques consider only physical features (e.g., distance, similarity, or distribution) of the input data. For this reason, those are called low-level classification. On the other hand, the human (animal) brain performs both low and high orders of learning, and it has a facility in identifying pat-terns according to the semantic meaning of the input data. Data classification that considers not only physical attributes but also the pattern formation is referred to as high-level classification. Several high-level classification techniques have been developed, which make use of complex networks to characterize data patterns and have obtained promising results. In this paper, we propose a pure network-based high-level classification technique that uses the betweenness centrality measure. We test this model in nine different real datasets and compare it with other nine traditional and well-known classification models. The results show us a competent classification performance. Netwokrs

(back to top)

Built With

This project was builded with the next technologies.

(back to top)

Getting Started

Prerequisites

You need the next componenets to run this project.

  • Docker. To install it follow these steps Click. On Ubuntu, you can run:
sudo apt-get install docker-ce docker-ce-cli containerd.io
  • Visual Studio Code. To install it follow these steps Click. On Ubuntu, you can run:
sudo snap install code --classic
  • Install the visual studio code extension "Remote - Containers"

Installation

Follow the next steps:

  1. Run the visual studio code.
  2. Open the folder where you clone the repository.
  3. Click on the green button with this symbol in the bottom left of visual studio code "><".
  4. Click on reopen in a container.
  5. Execute "main.py".

(back to top)

Usage

You can use the HLNB_BC as a classifier of scikit-learn. Just need train and predict.

classifier = HLNB_BC()
classifier.fit(dataset["data"], dataset["target"])
classifier.predict(dataset_test["data"])

License

Distributed under the GNU v3 License. See LICENSE for more information.

(back to top)

Contact

Esteban Vilca - @ds_estebanvz - [email protected]

Project Link: https://github.com/estebanvz/hl_classification_bc

(back to top)

Owner
Esteban Vilca
My name is Esteban Vilca. I focused on data science. Transform data into valuable information for companies is my passion.
Esteban Vilca
CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

Azhaan 2 Jan 03, 2022
Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

GPflow 257 Dec 26, 2022
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
9th place solution

AllDataAreExt-Galixir-Kaggle-HPA-2021-Solution Team Members Qishen Ha is Master of Engineering from the University of Tokyo. Machine Learning Engineer

daishu 5 Nov 18, 2021
🌊 Online machine learning in Python

In a nutshell River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition

OnlineML 4k Jan 02, 2023
Count the MACs / FLOPs of your PyTorch model.

THOP: PyTorch-OpCounter How to install pip install thop (now continously intergrated on Github actions) OR pip install --upgrade git+https://github.co

Ligeng Zhu 3.9k Dec 29, 2022
Boundary-aware Transformers for Skin Lesion Segmentation

Boundary-aware Transformers for Skin Lesion Segmentation Introduction This is an official release of the paper Boundary-aware Transformers for Skin Le

Jiacheng Wang 79 Dec 16, 2022
Repository of Vision Transformer with Deformable Attention

Vision Transformer with Deformable Attention This repository contains the code for the paper Vision Transformer with Deformable Attention [arXiv]. Int

410 Jan 03, 2023
kullanışlı ve işinizi kolaylaştıracak bir araç

Hey merhaba! işte çok sorulan sorularının cevabı ve sorunlarının çözümü; Soru= İçinde var denilen birçok şeyi göremiyorum bunun sebebi nedir? Cevap= B

Sexettin 16 Dec 17, 2022
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022
Simple machine learning library / 簡單易用的機器學習套件

FukuML Simple machine learning library / 簡單易用的機器學習套件 Installation $ pip install FukuML Tutorial Lesson 1: Perceptron Binary Classification Learning Al

Fukuball Lin 279 Sep 15, 2022
Teaches a student network from the knowledge obtained via training of a larger teacher network

Distilling-the-knowledge-in-neural-network Teaches a student network from the knowledge obtained via training of a larger teacher network This is an i

Abhishek Sinha 146 Dec 11, 2022
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning

Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning This is the official repository for Conservative and Adaptive Penalty fo

7 Nov 22, 2022
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

35 Nov 25, 2022
Train neural network for semantic segmentation (deep lab V3) with pytorch in less then 50 lines of code

Train neural network for semantic segmentation (deep lab V3) with pytorch in 50 lines of code Train net semantic segmentation net using Trans10K datas

17 Dec 19, 2022
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8

FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego

Marcos V. Conde 19 Dec 06, 2022
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

Nervana 3.9k Dec 20, 2022
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023