An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset

Overview

关于实现的一点说明


文件说明

  • tools.py 这里面主要有两个函数:

    • resize(a, lenb)

    这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因为懒得装openCV,于是手动写了一个把图像降低分辨率的操作,原理是根据几何关系计算新的像素值。总之可以把$28\times28$的MNIST原始数据改成$16\times 16$的,这就可以用8个比特encode了。写的可能比较丑陋,但毕竟只是初始化数据用的,所以能用一次性就行了。

    • controlled_gate(circuit, gate, tqubit, cqubits, zero_qubit)

    这其实是因为我发现mindquantum的受控门不支持“空心受控”,于是我就自己写了个。如果$cqubits=[0,-1,2],zero_qubit=1$就表示第一、三量子比特为1时,第二量子比特为0时,才进行运算。就是用负数表示了“空心受控”,然后zero_qubit单独判断了下第0量子比特。(因为它没有符号)

  • test.py: 主程序,里面写注释了。用来训练和预测。

  • MNIST_params.npy:因为我手动写了个实现amplitude encoding的线路,然后该线路也是有参数的,参数是原始数据的各种复合运算。因为我不知道mindquantum支持参数复合运算的操作,于是我就预处理了下数据,把这些参数都算出来了(针对每个样本)。原始数据是$16\times 16=[0,256)$,但encoder中的参数只有$[0,255)$。所以MNIST_params.npy里的数据的规模是$60000\times 255$的。

  • MNIST_train.npy:$60000\times 256$的原始数据

  • MNIST_train_formalized:$60000\times 256$的原始数据,每行都归一化了,方便encoding。

  • weights.npy:我已经训练好的一组ansatz的参数值,在test.py中有用它来预测。

关于原理的一些说明

  • encoder部分是我自己想的hhh,我想了一个可以实现amplitude encoding的线路。复杂度不高。

  • ansatz我选的是https://arxiv.org/pdf/2108.00661.pdf中讲到的convolutional circuit1:

    cc

    pooling层就比较随意的受控RZ和受控RX门

  • 最后就是基于计算基下测量。

  • 然后就是Adam优化啥的都是自带的好东西,一直train就完事了

Owner
ぼっけなす
やがて、平凡な人になった
ぼっけなす
load .txt to train YOLOX, same as Yolo others

YOLOX train your data you need generate data.txt like follow format (per line- one image). prepare one data.txt like this: img_path1 x1,y1,x2,y2,clas

LiMingf 18 Aug 18, 2022
OpenMMLab Pose Estimation Toolbox and Benchmark.

Introduction English | 简体中文 MMPose is an open-source toolbox for pose estimation based on PyTorch. It is a part of the OpenMMLab project. The master b

OpenMMLab 2.8k Dec 31, 2022
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)

MTTS-CAN: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement Paper Xin Liu, Josh Fromm, Shwetak Patel, Daniel M

Xin Liu 106 Dec 30, 2022
Scientific Computation Methods in C and Python (Open for Hacktoberfest 2021)

Sci - cpy README is a stub. Do expand it. Objective This repository is meant to be a ready reference for scientific computation methods. Do ⭐ it if yo

Sandip Dutta 7 Oct 12, 2022
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
Official Pytorch implementation of ICLR 2018 paper Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge.

Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge: Official Pytorch implementation of ICLR 2018 paper Deep Learning for Phy

emmanuel 47 Nov 06, 2022
Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

TailCalibX : Feature Generation for Long-tail Classification by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi [arXiv] [

Rahul Vigneswaran 34 Jan 02, 2023
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN

StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN This is the PyTorch implementation of StyleGAN of All Trades: Image Manipulati

360 Dec 28, 2022
Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

75 Nov 24, 2022
SASM - simple crossplatform IDE for NASM, MASM, GAS and FASM assembly languages

SASM (SimpleASM) - простая кроссплатформенная среда разработки для языков ассемблера NASM, MASM, GAS, FASM с подсветкой синтаксиса и отладчиком. В SA

Dmitriy Manushin 5.6k Jan 06, 2023
Synthesizing and manipulating 2048x1024 images with conditional GANs

pix2pixHD Project | Youtube | Paper Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translatio

NVIDIA Corporation 6k Dec 27, 2022
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
a morph transfer UGATIT for image translation.

Morph-UGATIT a morph transfer UGATIT for image translation. Introduction 中文技术文档 This is Pytorch implementation of UGATIT, paper "U-GAT-IT: Unsupervise

55 Nov 14, 2022
Numenta Platform for Intelligent Computing is an implementation of Hierarchical Temporal Memory (HTM), a theory of intelligence based strictly on the neuroscience of the neocortex.

NuPIC Numenta Platform for Intelligent Computing The Numenta Platform for Intelligent Computing (NuPIC) is a machine intelligence platform that implem

Numenta 6.3k Dec 30, 2022
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
SMPL-X: A new joint 3D model of the human body, face and hands together

SMPL-X: A new joint 3D model of the human body, face and hands together [Paper Page] [Paper] [Supp. Mat.] Table of Contents License Description News I

Vassilis Choutas 1k Jan 09, 2023
A repo for Causal Imitation Learning under Temporally Correlated Noise

CausIL A repo for Causal Imitation Learning under Temporally Correlated Noise. Running Experiments To re-train an expert, run: python experts/train_ex

Gokul Swamy 5 Nov 01, 2022
Deep Learning Models for Causal Inference

Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.

Bernard J Koch 151 Dec 31, 2022
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022