Synthesizing and manipulating 2048x1024 images with conditional GANs

Overview





pix2pixHD

Project | Youtube | Paper

Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translation. It can be used for turning semantic label maps into photo-realistic images or synthesizing portraits from face label maps.

High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs
Ting-Chun Wang1, Ming-Yu Liu1, Jun-Yan Zhu2, Andrew Tao1, Jan Kautz1, Bryan Catanzaro1
1NVIDIA Corporation, 2UC Berkeley
In CVPR 2018.

Image-to-image translation at 2k/1k resolution

  • Our label-to-streetview results

- Interactive editing results

- Additional streetview results

  • Label-to-face and interactive editing results

  • Our editing interface

Prerequisites

  • Linux or macOS
  • Python 2 or 3
  • NVIDIA GPU (11G memory or larger) + CUDA cuDNN

Getting Started

Installation

pip install dominate
  • Clone this repo:
git clone https://github.com/NVIDIA/pix2pixHD
cd pix2pixHD

Testing

  • A few example Cityscapes test images are included in the datasets folder.
  • Please download the pre-trained Cityscapes model from here (google drive link), and put it under ./checkpoints/label2city_1024p/
  • Test the model (bash ./scripts/test_1024p.sh):
#!./scripts/test_1024p.sh
python test.py --name label2city_1024p --netG local --ngf 32 --resize_or_crop none

The test results will be saved to a html file here: ./results/label2city_1024p/test_latest/index.html.

More example scripts can be found in the scripts directory.

Dataset

  • We use the Cityscapes dataset. To train a model on the full dataset, please download it from the official website (registration required). After downloading, please put it under the datasets folder in the same way the example images are provided.

Training

  • Train a model at 1024 x 512 resolution (bash ./scripts/train_512p.sh):
#!./scripts/train_512p.sh
python train.py --name label2city_512p
  • To view training results, please checkout intermediate results in ./checkpoints/label2city_512p/web/index.html. If you have tensorflow installed, you can see tensorboard logs in ./checkpoints/label2city_512p/logs by adding --tf_log to the training scripts.

Multi-GPU training

  • Train a model using multiple GPUs (bash ./scripts/train_512p_multigpu.sh):
#!./scripts/train_512p_multigpu.sh
python train.py --name label2city_512p --batchSize 8 --gpu_ids 0,1,2,3,4,5,6,7

Note: this is not tested and we trained our model using single GPU only. Please use at your own discretion.

Training with Automatic Mixed Precision (AMP) for faster speed

  • To train with mixed precision support, please first install apex from: https://github.com/NVIDIA/apex
  • You can then train the model by adding --fp16. For example,
#!./scripts/train_512p_fp16.sh
python -m torch.distributed.launch train.py --name label2city_512p --fp16

In our test case, it trains about 80% faster with AMP on a Volta machine.

Training at full resolution

  • To train the images at full resolution (2048 x 1024) requires a GPU with 24G memory (bash ./scripts/train_1024p_24G.sh), or 16G memory if using mixed precision (AMP).
  • If only GPUs with 12G memory are available, please use the 12G script (bash ./scripts/train_1024p_12G.sh), which will crop the images during training. Performance is not guaranteed using this script.

Training with your own dataset

  • If you want to train with your own dataset, please generate label maps which are one-channel whose pixel values correspond to the object labels (i.e. 0,1,...,N-1, where N is the number of labels). This is because we need to generate one-hot vectors from the label maps. Please also specity --label_nc N during both training and testing.
  • If your input is not a label map, please just specify --label_nc 0 which will directly use the RGB colors as input. The folders should then be named train_A, train_B instead of train_label, train_img, where the goal is to translate images from A to B.
  • If you don't have instance maps or don't want to use them, please specify --no_instance.
  • The default setting for preprocessing is scale_width, which will scale the width of all training images to opt.loadSize (1024) while keeping the aspect ratio. If you want a different setting, please change it by using the --resize_or_crop option. For example, scale_width_and_crop first resizes the image to have width opt.loadSize and then does random cropping of size (opt.fineSize, opt.fineSize). crop skips the resizing step and only performs random cropping. If you don't want any preprocessing, please specify none, which will do nothing other than making sure the image is divisible by 32.

More Training/Test Details

  • Flags: see options/train_options.py and options/base_options.py for all the training flags; see options/test_options.py and options/base_options.py for all the test flags.
  • Instance map: we take in both label maps and instance maps as input. If you don't want to use instance maps, please specify the flag --no_instance.

Citation

If you find this useful for your research, please use the following.

@inproceedings{wang2018pix2pixHD,
  title={High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs},
  author={Ting-Chun Wang and Ming-Yu Liu and Jun-Yan Zhu and Andrew Tao and Jan Kautz and Bryan Catanzaro},  
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2018}
}

Acknowledgments

This code borrows heavily from pytorch-CycleGAN-and-pix2pix.

Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun

ARAE Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun https://arxiv.org/abs/1706.04223 Disc

Junbo (Jake) Zhao 399 Jan 02, 2023
Securetar - A streaming wrapper around python tarfile and allow secure handling files and support encryption

Secure Tar Secure Tarfile library It's a streaming wrapper around python tarfile

Pascal Vizeli 2 Dec 09, 2022
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

Kent Sommer 297 Dec 26, 2022
CLIPort: What and Where Pathways for Robotic Manipulation

CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat

246 Dec 11, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 885 Jan 01, 2023
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
HGCN: Harmonic Gated Compensation Network For Speech Enhancement

HGCN The official repo of "HGCN: Harmonic Gated Compensation Network For Speech Enhancement", which was accepted at ICASSP2022. How to use step1: Calc

ScorpioMiku 33 Nov 14, 2022
PyTorch implementation for Graph Contrastive Learning with Augmentations

Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*

Shen Lab at Texas A&M University 382 Dec 15, 2022
Focal and Global Knowledge Distillation for Detectors

FGD Paper: Focal and Global Knowledge Distillation for Detectors Install MMDetection and MS COCO2017 Our codes are based on MMDetection. Please follow

Mesopotamia 261 Dec 23, 2022
SMIS - Semantically Multi-modal Image Synthesis(CVPR 2020)

Semantically Multi-modal Image Synthesis Project page / Paper / Demo Semantically Multi-modal Image Synthesis(CVPR2020). Zhen Zhu, Zhiliang Xu, Anshen

316 Dec 01, 2022
DualGAN-tensorflow: tensorflow implementation of DualGAN

ICCV paper of DualGAN DualGAN: unsupervised dual learning for image-to-image translation please cite the paper, if the codes has been used for your re

Jack Yi 252 Nov 10, 2022
FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data

FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data. Flexible EM-Inspired Discriminant Analysis is a robust supervised classification algorithm that performs well i

0 Sep 06, 2022
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022
Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks,

Google Research 367 Jan 09, 2023
Delving into Localization Errors for Monocular 3D Object Detection, CVPR'2021

Delving into Localization Errors for Monocular 3D Detection By Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai Yi, Haojie Li, Wanli Ouyang. Intr

XINZHU.MA 124 Jan 04, 2023
This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on table detection and table structure recognition.

WTW-Dataset This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on ICCV 2021. Here, you can download the

109 Dec 29, 2022
Gradient Inversion with Generative Image Prior

Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N

MLLab @ Postech 25 Jan 09, 2023
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022