Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Overview

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Paper

Description

Recent research has shown that numerous human-interpretable directions exist in the latent space of GANs. In this paper, we develop an automatic procedure for finding directions that lead to foreground-background image separation, and we use these directions to train an image segmentation model without human supervision. Our method is generator-agnostic, producing strong segmentation results with a wide range of different GAN architectures. Furthermore, by leveraging GANs pretrained on large datasets such as ImageNet, we are able to segment images from a range of domains without further training or finetuning. Evaluating our method on image segmentation benchmarks, we compare favorably to prior work while using neither human supervision nor access to the training data. Broadly, our results demonstrate that automatically extracting foreground-background structure from pretrained deep generative models can serve as a remarkably effective substitute for human supervision.

How to run

Dependencies

This code depends on pytorch-pretrained-gans, a repository I developed that exposes a standard interface for a variety of pretrained GANs. Install it with:

pip install git+https://github.com/lukemelas/pytorch-pretrained-gans

The pretrained weights for most GANs are downloaded automatically. For those that are not, I have provided scripts in that repository.

There are also some standard dependencies:

Install them with:

pip install hydra-core==1.1.0dev5 pytorch_lightning albumentations tqdm retry kornia

General Approach

Our unsupervised segmentation approach has two steps: (1) finding a good direction in latent space, and (2) training a segmentation model from data and masks that are generated using this direction.

In detail, this means:

  1. We use optimization/main.py finds a salient direction (or two salient directions) in the latent space of a given pretrained GAN that leads to foreground-background image separation.
  2. We use segmentation/main.py to train a standard segmentation network (a UNet) on generated data. The data can be generated in two ways: (1) you can generate the images on-the-fly during training, or (2) you can generate the images before training the segmentation model using segmentation/generate_and_save.py and then train the segmentation network afterward. The second approach is faster, but requires more disk space (~10GB for 1 million images). We will also provide a pre-generated dataset (coming soon).

Configuration and Logging

We use Hydra for configuration and Weights and Biases for logging. With Hydra, you can specify a config file (found in configs/) with --config-name=myconfig.yaml. You can also override the config from the command line by specifying the overriding arguments (without --). For example, you can enable Weights and Biases with wandb=True and you can name the run with name=myname.

The structure of the configs is as follows:

config
├── data_gen
│   ├── generated.yaml  # <- for generating data with 1 latent direction
│   ├── generated-dual.yaml   # <- for generating data with 2 latent directions
│   ├── generator  # <- different types of GANs for generating data
│   │   ├── bigbigan.yaml
│   │   ├── pretrainedbiggan.yaml
│   │   ├── selfconditionedgan.yaml
│   │   ├── studiogan.yaml
│   │   └── stylegan2.yaml 
│   └── saved.yaml  # <- for using pre-generated data
├── optimize.yaml  # <- for optimization
└── segment.yaml   # <- for segmentation

Code Structure

The code is structured as follows:

src
├── models  # <- segmentation model
│   ├── __init__.py
│   ├── latent_shift_model.py  # <- shifts direction in latent space
│   ├── unet_model.py  # <- segmentation model
│   └── unet_parts.py
├── config  # <- configuration, explained above
│   ├── ... 
├── datasets  # <- classes for loading datasets during segmentation/generation
│   ├── __init__.py
│   ├── gan_dataset.py  # <- for generating dataset
│   ├── saved_gan_dataset.py  # <- for pre-generated dataset
│   └── real_dataset.py  # <- for evaluation datasets (i.e. real images)
├── optimization
│   ├── main.py  # <- main script
│   └── utils.py  # <- helper functions
└── segmentation
    ├── generate_and_save.py  # <- for generating a dataset and saving it to disk
    ├── main.py  # <- main script, uses PyTorch Lightning 
    ├── metrics.py  # <- for mIoU/F-score calculations
    └── utils.py  # <- helper functions

Datasets

The datasets should have the following structure. You can easily add you own datasets or use only a subset of these datasets by modifying config/segment.yaml. You should specify your directory by modifying root in that file on line 19, or by passing data_seg.root=MY_DIR using the command line whenever you call python segmentation/main.py.

├── DUT_OMRON
│   ├── DUT-OMRON-image
│   │   └── ...
│   └── pixelwiseGT-new-PNG
│       └── ...
├── DUTS
│   ├── DUTS-TE
│   │   ├── DUTS-TE-Image
│   │   │   └── ...
│   │   └── DUTS-TE-Mask
│   │       └── ...
│   └── DUTS-TR
│       ├── DUTS-TR-Image
│       │   └── ...
│       └── DUTS-TR-Mask
│           └── ...
├── ECSSD
│   ├── ground_truth_mask
│   │   └── ...
│   └── images
│       └── ...
├── CUB_200_2011
│   ├── train_images
│   │   └── ...
│   ├── train_segmentations
│   │   └── ...
│   ├── test_images
│   │   └── ...
│   └── test_segmentations
│       └── ...
└── Flowers
    ├── train_images
    │   └── ...
    ├── train_segmentations
    │   └── ...
    ├── test_images
    │   └── ...
    └── test_segmentations
        └── ...

The datasets can be downloaded from:

Training

Before training, make sure you understand the general approach (explained above).

Note: All commands are called from within the src directory.

In the example commands below, we use BigBiGAN. You can easily switch out BigBiGAN for another model if you would like to.

Optimization

PYTHONPATH=. python optimization/main.py data_gen/generator=bigbigan name=NAME

This should take less than 5 minutes to run. The output will be saved in outputs/optimization/fixed-BigBiGAN-NAME/DATE/, with the final checkpoint in latest.pth.

Segmentation with precomputed generations

The recommended way of training is to generate the data first and train afterward. An example generation script would be:

PYTHONPATH=. python segmentation/generate_and_save.py \
name=NAME \
data_gen=generated \
data_gen/generator=bigbigan \
data_gen.checkpoint="YOUR_OPTIMIZATION_DIR_FROM_ABOVE/latest.pth" \
data_gen.save_dir="YOUR_OUTPUT_DIR" \
data_gen.save_size=1000000 \
data_gen.kwargs.batch_size=1 \
data_gen.kwargs.generation_batch_size=128

This will generate 1 million image-label pairs and save them to YOUR_OUTPUT_DIR/images. Note that YOUR_OUTPUT_DIR should be an absolute path, not a relative one, because Hydra changes the working directory. You may also want to tune the generation_batch_size to maximize GPU utilization on your machine. It takes around 3-4 hours to generate 1 million images on a single V100 GPU.

Once you have generated data, you can train a segmentation model:

PYTHONPATH=. python segmentation/main.py \
name=NAME \
data_gen=saved \
data_gen.data.root="YOUR_OUTPUT_DIR_FROM_ABOVE"

It takes around 3 hours on 1 GPU to complete 18000 iterations, by which point the model has converged (in fact you can probably get away with fewer steps, I would guess around ~5000).

Segmentation with on-the-fly generations

Alternatively, you can generate data while training the segmentation model. An example script would be:

PYTHONPATH=. python segmentation/main.py \
name=NAME \
data_gen=generated \
data_gen/generator=bigbigan \
data_gen.checkpoint="YOUR_OPTIMIZATION_DIR_FROM_ABOVE/latest.pth" \
data_gen.kwargs.generation_batch_size=128

Evaluation

To evaluate, set the train argument to False. For example:

python train.py \
name="eval" \
train=False \
eval_checkpoint=${checkpoint} \
data_seg.root=${DATASETS_DIR} 

Pretrained models

  • ... are coming soon!

Available GANs

It should be possible to use any GAN from pytorch-pretrained-gans, including:

Citation

@inproceedings{melaskyriazi2021finding,
  author    = {Melas-Kyriazi, Luke and Rupprecht, Christian and Laina, Iro and Vedaldi, Andrea},
  title     = {Finding an Unsupervised Image Segmenter in each of your Deep Generative Models},
  booktitle = arxiv,
  year      = {2021}
}
You might also like...
pytorch implementation of
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

pyhsmm - library for approximate unsupervised inference in Bayesian Hidden Markov Models (HMMs) and explicit-duration Hidden semi-Markov Models (HSMMs), focusing on the Bayesian Nonparametric extensions, the HDP-HMM and HDP-HSMM, mostly with weak-limit approximations. The pytorch implementation of  DG-Font: Deformable Generative Networks for Unsupervised Font Generation
The pytorch implementation of DG-Font: Deformable Generative Networks for Unsupervised Font Generation

DG-Font: Deformable Generative Networks for Unsupervised Font Generation The source code for 'DG-Font: Deformable Generative Networks for Unsupervised

Minimal PyTorch implementation of Generative Latent Optimization from the paper
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

DeepCAD: A Deep Generative Network for Computer-Aided Design Models
DeepCAD: A Deep Generative Network for Computer-Aided Design Models

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

Comments
  • pip install git+https://github.com/lukemelas/pytorch-pretrained-gans

    pip install git+https://github.com/lukemelas/pytorch-pretrained-gans

    Hi, is the repo in the pytorch-pretrained-gans step public or is that the right URL for it? I got prompted for username and password when I tried the pip install git+ and don't see the repo at that URL: https://github.com/lukemelas/pytorch-pretrained-gans (Get 404)

    Thanks.

    opened by ModMorph 2
  • Help producing results with the StyleGAN models

    Help producing results with the StyleGAN models

    Hi there!

    I'm having trouble producing meaningful results on StyleGAN2 on AFHQ. I've been using the default setup and hyperparameters. After 50 iterations (with the default batch size of 32) I get visualisations that look initially promising: (https://i.imgur.com/eR79Wyd.png). But as training progresses, and indeed when it reaches 300 iterations, these are the visualisation results: https://i.imgur.com/36zhBzT.png.

    I've tried playing with the learning rate, and the number of iterations with no success yet. Did you have tips here or ideas as to what might be going wrong here?

    Thanks! James.

    opened by james-oldfield 1
  • bug

    bug

    Firstly, I ran PYTHONPATH=. python optimization/main.py data_gen/generator=bigbigan name=NAME. And then, I ran PYTHONPATH=. python segmentation/generate_and_save.py \ name=NAME \ data_gen=generated \ data_gen/generator=bigbigan \ data_gen.checkpoint="YOUR_OPTIMIZATION_DIR_FROM_ABOVE/latest.pth" \ data_gen.save_dir="YOUR_OUTPUT_DIR" \ data_gen.save_size=1000000 \ data_gen.kwargs.batch_size=1 \ data_gen.kwargs.generation_batch_size=128 When I ran PYTHONPATH=. python segmentation/main.py \ name=NAME \ data_gen=saved \ data_gen.data.root="YOUR_OUTPUT_DIR_FROM_ABOVE" An error occurred. The error is: Traceback (most recent call last): File "segmentation/main.py", line 98, in main kwargs = dict(images_dir=_cfg.images_dir, labels_dir=_cfg.labels_dir, omegaconf.errors.InterpolationResolutionError: KeyError raised while resolving interpolation: "Environment variable '/raid/name/gaochengli/segmentation/src/images' not found" full_key: data_seg.data[0].images_dir object_type=dict According to what you wrote, I modified the root (config/segment.yaml on line 19). Just like this "/raid/name/gaochengli/segmentation/src/images". And the folder contains all data sets,whose name is images. I wonder why such a mistake happened.

    opened by Lee-Gao 1
Owner
Luke Melas-Kyriazi
I'm student at Harvard University studying mathematics and computer science, always open to collaborate on interesting projects!
Luke Melas-Kyriazi
Code from PropMix, accepted at BMVC'21

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels This repository is the official implementation of Hard Sample Fil

6 Dec 21, 2022
A 10000+ hours dataset for Chinese speech recognition

WenetSpeech Official website | Paper A 10000+ Hours Multi-domain Chinese Corpus for Speech Recognition Download Please visit the official website, rea

310 Jan 03, 2023
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
Turn based roguelike in python

pyTB Turn based roguelike in python Documentation can be found here: http://mcgillij.github.io/pyTB/index.html Screenshot Dependencies Written in Pyth

Jason McGillivray 4 Sep 29, 2022
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
Python Classes: Medical Insurance Project using Object Oriented Programming Concepts

Medical-Insurance-Project-OOP Python Classes: Medical Insurance Project using Object Oriented Programming Concepts Classes are an incredibly useful pr

Hugo B. 0 Feb 04, 2022
Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

105 Nov 27, 2022
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

Introduction This is a Python package available on PyPI for NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pyto

Artit 'Art' Wangperawong 5 Sep 29, 2021
Code for database and frontend of webpage for Neural Fields in Visual Computing and Beyond.

Neural Fields in Visual Computing—Complementary Webpage This is based on the amazing MiniConf project from Hendrik Strobelt and Sasha Rush—thank you!

Brown University Visual Computing Group 29 Nov 30, 2022
NeuroGen: activation optimized image synthesis for discovery neuroscience

NeuroGen: activation optimized image synthesis for discovery neuroscience NeuroGen is a framework for synthesizing images that control brain activatio

3 Aug 17, 2022
ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)

ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet) (

Wei-Ting Chen 49 Dec 27, 2022
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022
Code for the paper "Learning-Augmented Algorithms for Online Steiner Tree"

Learning-Augmented Algorithms for Online Steiner Tree This is the code for the paper "Learning-Augmented Algorithms for Online Steiner Tree". Requirem

0 Dec 09, 2021
A pytorch implementation of Reading Wikipedia to Answer Open-Domain Questions.

DrQA A pytorch implementation of the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions (DrQA). Reading comprehension is a task to produ

Runqi Yang 394 Nov 08, 2022
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
Deep-Learning-Image-Captioning - Implementing convolutional and recurrent neural networks in Keras to generate sentence descriptions of images

Deep Learning - Image Captioning with Convolutional and Recurrent Neural Nets ========================================================================

23 Apr 06, 2022
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

9 Nov 22, 2022
Official Implementation of Domain-Aware Universal Style Transfer

Domain Aware Universal Style Transfer Official Pytorch Implementation of 'Domain Aware Universal Style Transfer' (ICCV 2021) Domain Aware Universal St

KibeomHong 80 Dec 30, 2022