TextureGAN in Pytorch

Overview

TextureGAN

This code is our PyTorch implementation of TextureGAN [Project] [Arxiv]

TextureGAN is a generative adversarial network conditioned on sketch and colors/textures. Users “drag” one or more example textures onto sketched objects and the network realistically applies these textures to the indicated objects.

Setup

Prerequisites

  • Linux or OSX
  • Python 2.7
  • NVIDIA GPU + CUDA CuDNN

Dependency

  • Visdom
  • Ipython notebook
  • Pytorch 0.2 (torch and torchvision)
  • Numpy scikit-image matplotlib etc.

Getting Started

  • Clone this repo
git clone [email protected]:janesjanes/texturegan.git
cd texturegan
  • Prepare Datasets Download the training data:
wget https://s3-us-west-2.amazonaws.com/texturegan/training_handbag.tar.gz
tar -xvcf training_handbag.tar.gz

For shoe: https://s3-us-west-2.amazonaws.com/texturegan/training_shoe.tar.gz

For cloth: https://s3-us-west-2.amazonaws.com/texturegan/training_cloth.tar.gz

  • Train the model from scratch. See python main.py --help for training options. Example arguments (see the paper for the exact parameters value):
python main.py --display_port 7779 --gpu 3 --model texturegan --feature_weight 5e3 --pixel_weight_ab 1e4 
--global_pixel_weight_l 5e5 --local_pixel_weight_l 0 --style_weight 0 --discriminator_weight 5e5 --discriminator_local_weight 7e5  --learning_rate 5e-4 --learning_rate_D 1e-4 --batch_size 36 --save_every 100 --num_epoch 100000 --save_dir [./save_dir] 
--data_path [training_handbags_pretrain/] --learning_rate_D_local  1e-4 --local_texture_size 50 --patch_size_min 20 
--patch_size_max 50 --num_input_texture_patch 1 --visualize_every 5 --num_local_texture_patch 5

Models will be saved to ./save_dir

See more training details in section Train

You can also load our pretrained models in section Download Models.

To view results and losses as the model trains, start a visdom server for the ‘display_port’

python -m visdom.server -port 7779

Test the model

  • See our Ipython Notebook Test_script.ipynb

Train

TextureGAN proposes a two-stage training scheme.

  • The first training state is ground-truth pre-training. We extract input edge and texture patch from the same ground-truth image. Here, we show how to train the ground-truth pretrained model using a combination of pixel loss, color loss, feature loss, and adverserial loss.
python main.py --display_port 7779 --gpu 0 --model texturegan --feature_weight 10 --pixel_weight_ab 1e5 
--global_pixel_weight_l 100 --style_weight 0 --discriminator_weight 10 --learning_rate 1e-3 --learning_rate_D 1e-4 --save_dir
[/home/psangkloy3/handbag_texturedis_scratch] --data_path [./save_dir] --batch_size 16 --save_every 500 --num_epoch 100000 
--input_texture_patch original_image --loss_texture original_image --local_texture_size 50 --discriminator_local_weight 100  
--num_input_texture_patch 1
  • The second stage is external texture fine-tuning. This step is important for the network to reproduce textures for which we have no ground-truth output (e.g. a handbag with snakeskin texture). This time, we extract texture patch from an external texture dataset (see more in Section Download Dataset). We keep the feature and adversarial losses unchanged, but modify the pixel and color losses, to compare the generated result with the entire input texture from which input texture patches are extracted. We fine tune on previous pretrained model with addition of local texture loss by training a separate texture discriminator.
python main.py --display_port 7779 --load 1500 --load_D 1500 --load_epoch 222 --gpu 0 --model texturegan --feature_weight 5e3
--pixel_weight_ab 1e4 --global_pixel_weight_l 5e5 --local_pixel_weight_l 0 --style_weight 0 --discriminator_weight 5e5 
--discriminator_local_weight 7e5  --learning_rate 5e-4 --learning_rate_D 1e-4 --batch_size 36 --save_every 100 --num_epoch
100000 --save_dir [skip_leather_handbag/] --load_dir [handbag_texturedis_scratch/] 
--data_path [./save_dir] --learning_rate_D_local  1e-4 --local_texture_size 50 --patch_size_min 20 --patch_size_max 50 
--num_input_texture_patch 1 --visualize_every 5 --input_texture_patch dtd_texture --num_local_texture_patch 5

Download Datasets

The datasets we used for generating sketch and image pair in this paper are collected by other researchers. Please cite their papers if you use the data. The dataset is split into train and test set.

Edges are computed by HED edge detector + post-processing. [Citation]

The datasets we used for inputting texture patches are DTD Dataset and leather dataset we collected from the internet.

  • DTD Dataset:
  • Leather Dataset:

Download Models

Pre-trained models

Citation

If you find it this code useful for your research, please cite:

"TextureGAN: Controlling Deep Image Synthesis with Texture Patches"

Wenqi Xian, Patsorn Sangkloy, Varun Agrawal, Amit Raj, Jingwan Lu, Chen Fang, Fisher Yu, James Hays in CVPR, 2018.

@article{xian2017texturegan,
  title={Texturegan: Controlling deep image synthesis with texture patches},
  author={Xian, Wenqi and Sangkloy, Patsorn and Agrawal, Varun and Raj, Amit and Lu, Jingwan and Fang, Chen and Yu, Fisher and Hays, James},
  journal={arXiv preprint arXiv:1706.02823},
  year={2017}
}
KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

86 Dec 12, 2022
Faster RCNN pytorch windows

Faster-RCNN-pytorch-windows Faster RCNN implementation with pytorch for windows Open cmd, compile this comands: cd lib python setup.py build develop T

Hwa-Rang Kim 1 Nov 11, 2022
A modification of Daniel Russell's notebook merged with Katherine Crowson's hq-skip-net changes

Edits made to this repo by Katherine Crowson I have added several features to this repository for use in creating higher quality generative art (featu

Paul Fishwick 10 May 07, 2022
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning 🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
Face Recognition & AI Based Smart Attendance Monitoring System.

In today’s generation, authentication is one of the biggest problems in our society. So, one of the most known techniques used for authentication is h

Sagar Saha 1 Jan 14, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Learning to Simulate Dynamic Environments with GameGAN (CVPR 2020)

Learning to Simulate Dynamic Environments with GameGAN PyTorch code for GameGAN Learning to Simulate Dynamic Environments with GameGAN Seung Wook Kim,

199 Dec 26, 2022
DeLag: Detecting Latency Degradation Patterns in Service-based Systems

DeLag: Detecting Latency Degradation Patterns in Service-based Systems Replication package of the work "DeLag: Detecting Latency Degradation Patterns

SEALABQualityGroup @ University of L'Aquila 2 Mar 24, 2022
An unopinionated replacement for PyTorch's Dataset and ImageFolder, that handles Tar archives

Simple Tar Dataset An unopinionated replacement for PyTorch's Dataset and ImageFolder classes, for datasets stored as uncompressed Tar archives. Just

Joao Henriques 47 Dec 20, 2022
Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning

Human-Level Control through Deep Reinforcement Learning Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning. This imp

Devsisters Corp. 2.4k Dec 26, 2022
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

MDCA Calibration 21 Dec 22, 2022
Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022
FridaHookAppTool - Frida Hook App Tool With Python

FridaHookAppTool(以下是Hook mpaas框架的例子) mpaas移动开发框架ios端抓包hook脚本 使用方法:链接数据线,开启burp设置

13 Nov 30, 2022
An open-source Deep Learning Engine for Healthcare that aims to treat & prevent major diseases

AlphaCare Background AlphaCare is a work-in-progress, open-source Deep Learning Engine for Healthcare that aims to treat and prevent major diseases. T

Siraj Raval 44 Nov 05, 2022
Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022
Modeling CNN layers activity with Gaussian mixture model

GMM-CNN This code package implements the modeling of CNN layers activity with Gaussian mixture model and Inference Graphs visualization technique from

3 Aug 05, 2022
RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth, in ICCV 2021 (oral)

RINDNet RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth Mengyang Pu, Yaping Huang, Qingji Guan and Haibin Lin

Mengyang Pu 75 Dec 15, 2022
This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murder rates etc.

Gun-Laws-Classifier This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murde

Awais Saleem 1 Jan 20, 2022
This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

0 Feb 02, 2022