[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

Overview

OW-DETR: Open-world Detection Transformer (CVPR 2022)

[Paper]

Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Shah

( ๐ŸŒŸ denotes equal contribution)

Introduction

Open-world object detection (OWOD) is a challenging computer vision problem, where the task is to detect a known set of object categories while simultaneously identifying unknown objects. Additionally, the model must incrementally learn new classes that become known in the next training episodes. Distinct from standard object detection, the OWOD setting poses significant challenges for generating quality candidate proposals on potentially unknown objects, separating the unknown objects from the background and detecting diverse unknown objects. Here, we introduce a novel end-to-end transformer-based framework, OW-DETR, for open-world object detection. The proposed OW-DETR comprises three dedicated components namely, attention-driven pseudo-labeling, novelty classification and objectness scoring to explicitly address the aforementioned OWOD challenges. Our OW-DETR explicitly encodes multi-scale contextual information, possesses less inductive bias, enables knowledge transfer from known classes to the unknown class and can better discriminate between unknown objects and background. Comprehensive experiments are performed on two benchmarks: MS-COCO and PASCAL VOC. The extensive ablations reveal the merits of our proposed contributions. Further, our model outperforms the recently introduced OWOD approach, ORE, with absolute gains ranging from $1.8%$ to $3.3%$ in terms of unknown recall on MS-COCO. In the case of incremental object detection, OW-DETR outperforms the state-of-the-art for all settings on PASCAL VOC.


Installation

Requirements

We have trained and tested our models on Ubuntu 16.0, CUDA 10.2, GCC 5.4, Python 3.7

conda create -n owdetr python=3.7 pip
conda activate owdetr
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt

Compiling CUDA operators

cd ./models/ops
sh ./make.sh
# unit test (should see all checking is True)
python test.py

Dataset & Results

OWOD proposed splits



The splits are present inside data/VOC2007/OWOD/ImageSets/ folder. The remaining dataset can be downloaded using this link

The files should be organized in the following structure:

OW-DETR/
โ””โ”€โ”€ data/
    โ””โ”€โ”€ VOC2007/
        โ””โ”€โ”€ OWOD/
        	โ”œโ”€โ”€ JPEGImages
        	โ”œโ”€โ”€ ImageSets
        	โ””โ”€โ”€ Annotations

Results

Task1 Task2 Task3 Task4
Method U-Recall mAP U-Recall mAP U-Recall mAP mAP
ORE-EBUI 4.9 56.0 2.9 39.4 3.9 29.7 25.3
OW-DETR 7.5 59.2 6.2 42.9 5.7 30.8 27.8

Our proposed splits



The splits are present inside data/VOC2007/OWDETR/ImageSets/ folder. The remaining dataset can be downloaded using this link

The files should be organized in the following structure:

OW-DETR/
โ””โ”€โ”€ data/
    โ””โ”€โ”€ VOC2007/
        โ””โ”€โ”€ OWDETR/
        	โ”œโ”€โ”€ JPEGImages
        	โ”œโ”€โ”€ ImageSets
        	โ””โ”€โ”€ Annotations

Currently, Dataloader and Evaluator followed for OW-DETR is in VOC format.

Results

Task1 Task2 Task3 Task4
Method U-Recall mAP U-Recall mAP U-Recall mAP mAP
ORE-EBUI 1.5 61.4 3.9 40.6 3.6 33.7 31.8
OW-DETR 5.7 71.5 6.2 43.8 6.9 38.5 33.1

Training

Training on single node

To train OW-DETR on a single node with 8 GPUS, run

./run.sh

Training on slurm cluster

To train OW-DETR on a slurm cluster having 2 nodes with 8 GPUS each, run

sbatch run_slurm.sh

Evaluation

For reproducing any of the above mentioned results please run the run_eval.sh file and add pretrained weights accordingly.

Note: For more training and evaluation details please check the Deformable DETR reposistory.

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Citation

If you use OW-DETR, please consider citing:

@inproceedings{gupta2021ow,
    title={OW-DETR: Open-world Detection Transformer}, 
    author={Gupta, Akshita and Narayan, Sanath and Joseph, KJ and 
    Khan, Salman and Khan, Fahad Shahbaz and Shah, Mubarak},
    booktitle={CVPR},
    year={2022}
}

Contact

Should you have any question, please contact ๐Ÿ“ง [email protected]

Acknowledgments:

OW-DETR builds on previous works code base such as Deformable DETR, Detreg, and OWOD. If you found OW-DETR useful please consider citing these works as well.

Owner
Akshita Gupta
Sem @IITR | Outreachy @mozilla | Research Engineer @IIAI
Akshita Gupta
Matthew Colbrook 1 Apr 08, 2022
Group Activity Recognition with Clustered Spatial Temporal Transformer

GroupFormer Group Activity Recognition with Clustered Spatial-TemporalTransformer Backbone Style Action Acc Activity Acc Config Download Inv3+flow+pos

28 Dec 12, 2022
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

52 Dec 30, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
A PyTorch-based open-source framework that provides methods for improving the weakly annotated data and allows researchers to efficiently develop and compare their own methods.

Knodle (Knowledge-supervised Deep Learning Framework) - a new framework for weak supervision with neural networks. It provides a modularization for se

93 Nov 06, 2022
[CIKM 2021] Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. This repo contains the PyTorch code and implementation for the paper E

Akuchi 18 Dec 22, 2022
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Collyn O'Kane 37 Dec 22, 2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022
The official implementation of CircleNet: Anchor-free Detection with Circle Representation, MICCAI 2030

CircleNet: Anchor-free Detection with Circle Representation The official implementation of CircleNet, MICCAI 2020 [PyTorch] [project page] [MICCAI pap

The Biomedical Data Representation and Learning Lab 45 Nov 18, 2022
iNAS: Integral NAS for Device-Aware Salient Object Detection

iNAS: Integral NAS for Device-Aware Salient Object Detection Introduction Integral search design (jointly consider backbone/head structures, design/de

้กพๅฎ‡่ถ… 77 Dec 02, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Generating Band-Limited Adversarial Surfaces Using Neural Networks

Generating Band-Limited Adversarial Surfaces Using Neural Networks This is the official repository of the technical report that was published on arXiv

3 Jul 26, 2022
Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer

AdaConv Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer from "Adaptive Convolutions for Structure-

65 Dec 22, 2022
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023
WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose

WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose Yijun Zhou and James Gregson - BMVC2020 Abstract: We present an end-to-end head-pos

368 Dec 26, 2022
Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO)

KernelFunctionalOptimisation Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO) We have conducted all our experiments

2 Jun 29, 2022
This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''

The Pytorch Implementation of Category-consistent deep network learning for accurate vehicle logo recognition This is the offical website for paper ''

Wanglong Lu 28 Oct 29, 2022
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
ไธ€ไธชๅคš่ฏญ่จ€ๆ”ฏๆŒใ€ๆ˜“ไฝฟ็”จ็š„ OCR ้กน็›ฎใ€‚An easy-to-use OCR project with multilingual support.

AgentOCR ็ฎ€ไป‹ AgentOCR ๆ˜ฏไธ€ไธชๅŸบไบŽ PaddleOCR ๅ’Œ ONNXRuntime ้กน็›ฎๅผ€ๅ‘็š„ไธ€ไธชไฝฟ็”จ็ฎ€ๅ•ใ€่ฐƒ็”จๆ–นไพฟ็š„ OCR ้กน็›ฎ ๆœฌ้กน็›ฎ็›ฎๅ‰ๅŒ…ๅซ Python Package ใ€AgentOCRใ€‘ ๅ’Œ OCR ๆ ‡ๆณจ่ฝฏไปถ ใ€AgentOCRLabelingใ€‘ ไฝฟ็”จๆŒ‡ๅ— Pytho

AgentMaker 98 Nov 10, 2022