iNAS: Integral NAS for Device-Aware Salient Object Detection

Related tags

Deep LearningiNAS
Overview

iNAS: Integral NAS for Device-Aware Salient Object Detection

Introduction

Integral search design (jointly consider backbone/head structures, design/deploy devices).


Covers mainstream handcraft saliency head design.

SOTA performance with large latency reduction on diverse hardware platforms.


Updates

0.1.0 was released in 15/11/2021:

  • Support training and searching on Salient Object Detection (SOD).
  • Support four stages in one-shot architecture search.
  • Support stand-alone model inference with json configuration.
  • Provide off-the-shelf models and experiment logs.

Please refer to changelog.md for details and release history.

Dependencies and Installation

Dependencies

Install from a local clone

  1. Clone the repo

    git clone https://github.com/guyuchao/iNAS.git
  2. Install dependent packages

    conda create -n iNAS python=3.8
    conda install -c pytorch pytorch=1.7 torchvision cudatoolkit=10.2
    pip install -r requirements.txt
  3. Install iNAS
    Please run the following commands in the iNAS root path to install iNAS:

    python setup.py develop

Dataset Preparation

Folder Structure

iNAS
├── iNAS
├── experiment
├── scripts
├── options
├── datasets
│   ├── saliency
│   │   ├── DUTS-TR/            # Contains both images (.jpg) and labels (.png).
│   │   ├── DUTS-TR.lst         # Specify the image-label pair for training or testing.
│   │   ├── ECSSD/
│   │   ├── ECSSD.lst
│   │   ├── ...

Common Image SOD Datasets

We provide a list of common salient object detection datasets.

Name Datasets Short Description Download
SOD Training DUTS-TR 10553 images for SOD training Google Drive / Baidu Drive (psd: w69q)
SOD Testing ECSSD 1000 images for SOD testing
DUT-OMRON 5168 images for SOD testing
DUTS-TE 5019 images for SOD testing
HKU-IS 4447 images for SOD testing
PASCAL-S 850 images for SOD testing

How to Use

The iNAS integrates four main steps of one-shot neural architecture search:

  • Train supernet: Provide a fast performance evaluator for searching.
  • Search models: Find a pareto frontier based on performance evaluator and resource evaluator.
  • Convert weight/Retrain/Finetune: Promote searched model performance to its best. (We now support converting supernet weight to stand-alone models without retraining.)
  • Deploy: Test stand-alone models.

Please see Tutorial.md for the basic usage of those steps in iNAS.

Model Zoo

Pre-trained models and log examples are available in ModelZoo.md.

TODO List

  • Support multi-processing search (simply use data-parallel cannot increase search speed).
  • Complete documentations.
  • Add some applications.

Citation

If you find this project useful in your research, please consider cite:

@inproceedings{gu2021inas,
  title={iNAS: Integral NAS for Device-Aware Salient Object Detection},
  author={Gu, Yu-Chao and Gao, Shang-Hua and Cao, Xu-Sheng and Du, Peng and Lu, Shao-Ping and Cheng, Ming-Ming},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={4934--4944},
  year={2021}
}

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (cc-by-nc-sa), where only non-commercial usage is allowed. For commercial usage, please contact us.

Acknowledgement

The project structure is borrowed from BasicSR, and parts of implementation and evaluation codes are borrowed from Once-For-All, BASNet and BiSeNet . Thanks for these excellent projects.

Contact

If you have any questions, please email [email protected].

Owner
顾宇超
Postgraduate at Nankai University.
顾宇超
Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases.

Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases. Ivy wraps the functional APIs of existing frameworks. Framework-agnostic functions, libraries an

Ivy 8.2k Jan 02, 2023
Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting

Autoformer (NeurIPS 2021) Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting Time series forecasting is a c

THUML @ Tsinghua University 847 Jan 08, 2023
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
YOLO-v5 기반 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adaptive Cruise Control 기능 구현

자율 주행차의 영상 기반 차간거리 유지 개발 Table of Contents 프로젝트 소개 주요 기능 시스템 구조 디렉토리 구조 결과 실행 방법 참조 팀원 프로젝트 소개 YOLO-v5 기반으로 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adap

14 Jun 29, 2022
CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY

M-BERT-Study CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY Motivation Multilingual BERT (M-BERT) has shown surprising cross lingual a

CogComp 1 Feb 28, 2022
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
Deploy a ML inference service on a budget in less than 10 lines of code.

BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end.

1.3k Dec 25, 2022
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour

Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to

Equinor 26 Dec 27, 2022
yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.

YOLOX-Backbone yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models. Install pip install yolox-backbone Load a Pret

Yonghye Kwon 21 Dec 28, 2022
On Out-of-distribution Detection with Energy-based Models

On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr

Sven 19 Aug 07, 2022
FOSS Digital Asset Distribution Platform built on Frappe.

Digistore FOSS Digital Assets Marketplace. Distribute digital assets, like a pro. Video Demo Here Features Create, attach and list digital assets (PDF

Mohammad Hussain Nagaria 30 Dec 08, 2022
The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

FOREC: A Cross-Market Recommendation System This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recomme

Hamed Bonab 16 Sep 12, 2022
Open-Ended Commonsense Reasoning (NAACL 2021)

Open-Ended Commonsense Reasoning Quick links: [Paper] | [Video] | [Slides] | [Documentation] This is the repository of the paper, Differentiable Open-

(Bill) Yuchen Lin 31 Oct 19, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)

CCAM (Unsupervised) Code repository for our paper "CCAM: Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localizati

Computer Vision Insitute, SZU 113 Dec 27, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022
This repository accompanies the ACM TOIS paper "What can I cook with these ingredients?" - Understanding cooking-related information needs in conversational search

In this repository you find data that has been gathered when conducting in-situ experiments in a conversational cooking setting. These data include tr

6 Sep 22, 2022
Lazy, a tool for running things in idle time

Lazy, a tool for running things in idle time Mostly used to stop CUDA ML model training from making my desktop unusable. Simply monitors keyboard/mous

N Shepperd 46 Nov 06, 2022