The code is the training example of AAAI2022 Security AI Challenger Program Phase 8: Data Centric Robot Learning on ML models.

Overview

中文版 | English

使用方法

该代码是AAAI2022 安全AI挑战者计划第八期:Data-Centric Robust Learning on ML Models的训练示例。选手可简单的使用以下两条命令训练resnet50以及densenet121模型:

git clone https://github.com/vtddggg/training_template_for_AI_challenger_sea8.git && cd training_template_for_AI_challenger_sea8
sh train.sh

运行完成后,会在当前路径下产生Dataset.zip文件,选手可直接上传该文件作为官方提供的baseline成绩

注意

为了重现训练过程,代码中的所有random seed已经固定,我们鼓励选手在新版本的pytorch上进行训练。推荐使用pytorch官方docker:pytorch/pytorch:1.8.1-cuda10.2-cudnn7-runtime

我们公开了在GeForce RTX 2080Ti上的训练日志,需要注意在不同型号的GPU设备上训练可能会产生略有差异的结果,这些小差异在最终做成绩验证时可忽略

创建自己的提交

选手必须提交一个压缩包(包含data.npy, label.npy, config.py, resnet50.pth.tar以及densenet121.pth.tar),这5个文件分别通过以下步骤生成:

  1. data.npy, label.npy, config.py三个文件可由选手自己创建和修改,作为自定义的训练数据和config,但需要满足赛题中给出的限制。除了训练数据和config,另外在training_template_for_AI_challenger_sea8目录下的训练代码.py文件均固定,不可擅自改动。

  2. 将以上三个文件替换到training_template_for_AI_challenger_sea8中,执行sh train.sh训练

  3. 训练完毕后,将生成的Dataset.zip提交至比赛页面

需要注意的是,在测试提交结束后,我们会验证选手的训练结果,因此,请时刻注意压缩包中的resnet50.pth.tardensenet121.pth.tar确实是由对应的data.npy, label.npy, config.py训练生成的

感谢大家的参与,最后预祝各位参赛选手取得好成绩!

Owner
Student
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework

VFedPCA+VFedAKPCA This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-

John 9 Sep 18, 2022
Tesla Light Show xLights Guide With python

Tesla Light Show xLights Guide Welcome to the Tesla Light Show xLights guide! You can create and run your own light shows on Tesla vehicles. Running a

Tesla, Inc. 2.5k Dec 29, 2022
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

DSL Project page: https://sites.google.com/view/dsl-ram-lab/ Monocular Direct Sparse Localization in a Prior 3D Surfel Map Authors: Haoyang Ye, Huaiya

Haoyang Ye 93 Nov 30, 2022
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Şebnem 6 Jan 18, 2022
Erpnext app for make employee salary on payroll entry based on one or more project with percentage for all project equal 100 %

Project Payroll this app for make payroll for employee based on projects like project on 30 % and project 2 70 % as account dimension it makes genral

Ibrahim Morghim 8 Jan 02, 2023
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
Automatic learning-rate scheduler

AutoLRS This is the PyTorch code implementation for the paper AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly published

Yuchen Jin 33 Nov 18, 2022
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
Alphabetical Letter Recognition

BayeesNetworks-Image-Classification Alphabetical Letter Recognition In these demo we are using "Bayees Networks" Our database is composed by Learning

Mohammed Firass 4 Nov 30, 2021
The Fundamental Clustering Problems Suite (FCPS) summaries 54 state-of-the-art clustering algorithms, common cluster challenges and estimations of the number of clusters as well as the testing for cluster tendency.

FCPS Fundamental Clustering Problems Suite The package provides over sixty state-of-the-art clustering algorithms for unsupervised machine learning pu

9 Nov 27, 2022
Code accompanying the paper Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs (Chen et al., CVPR 2020, Oral).

Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs This repository contains PyTorch implementation of our pa

Shizhe Chen 178 Dec 29, 2022
The Malware Open-source Threat Intelligence Family dataset contains 3,095 disarmed PE malware samples from 454 families

MOTIF Dataset The Malware Open-source Threat Intelligence Family (MOTIF) dataset contains 3,095 disarmed PE malware samples from 454 families, labeled

Booz Allen Hamilton 112 Dec 13, 2022
Node-level Graph Regression with Deep Gaussian Process Models

Node-level Graph Regression with Deep Gaussian Process Models Prerequests our implementation is mainly based on tensorflow 1.x and gpflow 1.x: python

1 Jan 16, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

AutoViz and Auto_ViML 397 Dec 30, 2022
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems

The SLIDE package contains the source code for reproducing the main experiments in this paper. Dataset The Datasets can be downloaded in Amazon-

Intel Labs 72 Dec 16, 2022
Out-of-distribution detection using the pNML regret. NeurIPS2021

OOD Detection Load conda environment conda env create -f environment.yml or install requirements: while read requirement; do conda install --yes $requ

Koby Bibas 23 Dec 02, 2022