MonoScene: Monocular 3D Semantic Scene Completion

Overview

MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page]
Anh-Quan Cao, Raoul de Charette
Inria, Paris, France

If you find this work useful, please cite our paper:

@misc{cao2021monoscene,
      title={MonoScene: Monocular 3D Semantic Scene Completion}, 
      author={Anh-Quan Cao and Raoul de Charette},
      year={2021},
      eprint={2112.00726},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Code and models will be released soon. Please watch this repo for updates.

Demo

SemanticKITTI KITTI-360
(Trained on SemanticKITTI)

NYUv2

Comments
  • TypeError: 'int' object is not subscriptable

    TypeError: 'int' object is not subscriptable

    (monoscene) [email protected]:~/workplace/MonoScene$ python monoscene/scripts/train_monoscene.py dataset=kitti enable_log=true kitti_root=$KITTI_ROOT kitti_preprocess_root=$KITTI_PREPROCESS kitti_logdir=$KITTI_LOG n_gpus=2 batch_size=2 ^[[Dexp_kitti_1_FrusSize_8_nRelations4_WD0.0001_lr0.0001_CEssc_geoScalLoss_semScalLoss_fpLoss_CERel_3DCRP_Proj_2_4_8 n_relations (32, 32, 4) Traceback (most recent call last): File "monoscene/scripts/train_monoscene.py", line 118, in main class_weights=class_weights, File "/home/ruidong/workplace/MonoScene/monoscene/models/monoscene.py", line 80, in init context_prior=context_prior, File "/home/ruidong/workplace/MonoScene/monoscene/models/unet3d_kitti.py", line 62, in init self.feature * 4, self.feature * 4, size_l3, bn_momentum=bn_momentum File "/home/ruidong/workplace/MonoScene/monoscene/models/CRP3D.py", line 15, in init self.flatten_size = size[0] * size[1] * size[2] TypeError: 'int' object is not subscriptable

    Set the environment variable HYDRA_FULL_ERROR=1 for a complete stack trace.

    opened by DipDipPotatoChips 21
  • Questions about cross-entropy loss

    Questions about cross-entropy loss

    Dear authors, thanks for your great works! In your paper, you say that "the losses are computed only where y is defined". I wonder if this means you do not add supervision on non-occupied voxels and only use multi-class classification loss on occupied voxels ? If this holds true, why the model can identify which voxels are occupied ?

    opened by weiyithu 13
  • about test

    about test

    FileNotFoundError: [Errno 2] No such file or directory: '/home/ruidong/workplace/MonoScene/trained_models/monoscene_kitti.ckpt'

    the last printing of trainning is: Epoch 29: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 2325/2325 [1:06:52<00:00, 1.73s/it, loss=3.89, v_num=]

    opened by DipDipPotatoChips 13
  • Cuda out of memory

    Cuda out of memory

    Dear author, you said that Use smaller 2D backbone by chaning the basemodel_name and num_features The pretrained model name is here. You can try the efficientnet B5 can reduces the memory, I want to know the B5 weight and the value of num_features?

    opened by lulianLiu 12
  • Pretrained models on other dataset: NuScenes

    Pretrained models on other dataset: NuScenes

    Hi @anhquancao,

    Thanks so much for your paper and your implementation. Do you have your pretrained model on the NuScenes? If yes, could you share it? The reason is that I want to build upon your work on the NuScenes dataset but there exists a large domain gap between the two (SemanticKITTI and NuScenes) so the pretrained on SemanticKITTI works does not well on the NuScenes.

    Thanks!

    opened by ducminhkhoi 11
  • failed to run test

    failed to run test

    When I try to run this script, it crashed without giving any information: python monoscene/scripts/generate_output.py +output_path=$MONOSCENE_OUTPUT dataset=kitti_360 +kitti_360_root=$KITTI_360_ROOT +kitti_360_sequence=2013_05_28_drive_0028_sync n_gpus=1 batch_size=1

    image

    Any suggestion will be much appreciated.

    opened by ChiyuanFeng 9
  • cannot find calib

    cannot find calib

    PS F:\Studying\CY-Workspace\MonoScene-master> python monoscene/scripts/eval_monoscene.py dataset=kitti kitti_root=$KITTI_ROOT kitti_preprocess_root=$KITTI_PREPROCESS n_gpus=1 batch_size= 1 GPU available: True, used: True TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs n_relations 4 Using cache found in C:\Users\DELL/.cache\torch\hub\rwightman_gen-efficientnet-pytorch_master Loading base model ()...Done. Removing last two layers (global_pool & classifier). Building Encoder-Decoder model..Done. Traceback (most recent call last): File "monoscene/scripts/eval_monoscene.py", line 71, in main data_module.setup() File "F:\anaconda\envs\monoscene\lib\site-packages\pytorch_lightning\core\datamodule.py", line 440, in wrapped_fn fn(*args, **kwargs) File "F:\Studying\CY-Workspace\MonoScene-master\monoscene\scripts/../..\monoscene\data\semantic_kitti\kitti_dm.py", line 34, in setup color_jitter=(0.4, 0.4, 0.4), File "F:\Studying\CY-Workspace\MonoScene-master\monoscene\scripts/../..\monoscene\data\semantic_kitti\kitti_dataset.py", line 60, in init os.path.join(self.root, "dataset", "sequences", sequence, "calib.txt") File "F:\Studying\CY-Workspace\MonoScene-master\monoscene\scripts/../..\monoscene\data\semantic_kitti\kitti_dataset.py", line 193, in read_calib with open(calib_path, "r") as f: FileNotFoundError: [Errno 2] No such file or directory: 'dataset\sequences\00\calib.txt'

    opened by cyaccpect 9
  • about visualization

    about visualization

    (monoscene) [email protected]:~/workplace/MonoScene$ python monoscene/scripts/visualization/kitti_vis_pred.py +file=/home/ruidong/workplace/MonoScene/outputs/kitti/08/000000.pkl +dataset=kitt monoscene/scripts/visualization/kitti_vis_pred.py:23: DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations coords_grid = coords_grid.astype(np.float) Traceback (most recent call last): File "monoscene/scripts/visualization/kitti_vis_pred.py", line 196, in main d=7, File "monoscene/scripts/visualization/kitti_vis_pred.py", line 75, in draw grid_coords = np.vstack([grid_coords.T, voxels.reshape(-1)]).T AttributeError: 'tuple' object has no attribute 'T'

    Set the environment variable HYDRA_FULL_ERROR=1 for a complete stack trace.

    opened by DipDipPotatoChips 9
  • Porting the work of this paper to a new dataset

    Porting the work of this paper to a new dataset

    Hello author, first of all thank you for your great work. I want to directly apply your work to the nuscenes dataset, is it possible? Does the nuscenes dataset need point cloud data to assist in generating voxel data?

    opened by yukaizhou 8
  • Can you help me in another paper?

    Can you help me in another paper?

    Hello! Last year, when you reproduced the code SISC(https://github.com/OPEN-AIR-SUN/SISC), you found a bug and solve it! Now, I get the same problem too,can you tell me how to solve it ! Thank you very much!

    opened by WkangLiu 8
  • ImportError: cannot import name 'get_num_classes' from 'torchmetrics.utilities.data'

    ImportError: cannot import name 'get_num_classes' from 'torchmetrics.utilities.data'

    there is something wrong with my machine and I reinstall my ubuntu. I re-gitclone the code and just keep the data.but when I follow the readme to do installation,it print:

    (monoscene) [email protected]:~/workplace/MonoScene$ pip install -e ./ Obtaining file:///home/potato/workplace/MonoScene Installing collected packages: monoscene Running setup.py develop for monoscene Successfully installed monoscene-0.0.0 (monoscene) [email protected]:~/workplace/MonoScene$ python monoscene/scripts/train_monoscene.py dataset=kitti enable_log=true kitti_root=$KITTI_ROOT kitti_preprocess_root=$KITTI_PREPROCESS kitti_logdir=$KITTI_LOG n_gpus=1 batch_size=1 sem_scal_loss=False Traceback (most recent call last): File "monoscene/scripts/train_monoscene.py", line 1, in from monoscene.data.semantic_kitti.kitti_dm import KittiDataModule File "/home/potato/workplace/MonoScene/monoscene/data/semantic_kitti/kitti_dm.py", line 3, in import pytorch_lightning as pl File "/home/potato/anaconda3/envs/monoscene/lib/python3.7/site-packages/pytorch_lightning/init.py", line 20, in from pytorch_lightning import metrics # noqa: E402 File "/home/potato/anaconda3/envs/monoscene/lib/python3.7/site-packages/pytorch_lightning/metrics/init.py", line 15, in from pytorch_lightning.metrics.classification import ( # noqa: F401 File "/home/potato/anaconda3/envs/monoscene/lib/python3.7/site-packages/pytorch_lightning/metrics/classification/init.py", line 14, in from pytorch_lightning.metrics.classification.accuracy import Accuracy # noqa: F401 File "/home/potato/anaconda3/envs/monoscene/lib/python3.7/site-packages/pytorch_lightning/metrics/classification/accuracy.py", line 18, in from pytorch_lightning.metrics.utils import deprecated_metrics, void File "/home/potato/anaconda3/envs/monoscene/lib/python3.7/site-packages/pytorch_lightning/metrics/utils.py", line 22, in from torchmetrics.utilities.data import get_num_classes as _get_num_classes ImportError: cannot import name 'get_num_classes' from 'torchmetrics.utilities.data' (/home/potato/anaconda3/envs/monoscene/lib/python3.7/site-packages/torchmetrics/utilities/data.py)

    opened by DipDipPotatoChips 7
Releases(v0.1)
Owner
Codes from Computer Vision group of RITS Team, Inria
A simple configurable bot for sending arXiv article alert by mail

arXiv-newsletter A simple configurable bot for sending arXiv article alert by mail. Prerequisites PyYAML=5.3.1 arxiv=1.4.0 Configuration All config

SXKDZ 21 Nov 09, 2022
Deep learning operations reinvented (for pytorch, tensorflow, jax and others)

This video in better quality. einops Flexible and powerful tensor operations for readable and reliable code. Supports numpy, pytorch, tensorflow, and

Alex Rogozhnikov 6.2k Jan 01, 2023
Pytorch Implementation of paper "Noisy Natural Gradient as Variational Inference"

Noisy Natural Gradient as Variational Inference PyTorch implementation of Noisy Natural Gradient as Variational Inference. Requirements Python 3 Pytor

Tony JiHyun Kim 119 Dec 02, 2022
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
Keras Image Embeddings using Contrastive Loss

Keras-Image-Embeddings-using-Contrastive-Loss Image to Embedding projection in vector space. Implementation in keras and tensorflow for custom data. B

Shravan Anand K 5 Mar 21, 2022
Exponential Graph is Provably Efficient for Decentralized Deep Training

Exponential Graph is Provably Efficient for Decentralized Deep Training This code repository is for the paper Exponential Graph is Provably Efficient

3 Apr 20, 2022
PyTorch implementation of Value Iteration Networks (VIN): Clean, Simple and Modular. Visualization in Visdom.

VIN: Value Iteration Networks This is an implementation of Value Iteration Networks (VIN) in PyTorch to reproduce the results.(TensorFlow version) Key

Xingdong Zuo 215 Dec 07, 2022
CM building dataset Timisoara

CM_building_dataset_Timisoara Date created: Febr-2020 The Timi\c{s}oara Building Dataset - TMBuD - is composed of 160 images with the resolution of 76

Orhei Ciprian 5 Sep 07, 2022
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
links and status of cool gradio demos

awesome-demos This is a list of some wonderful demos & applications built with Gradio. Here's how to contribute yours! 🖊️ Natural language processing

Gradio 96 Dec 30, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Vaibhav Shukla 1 Oct 27, 2021
SlotRefine: A Fast Non-Autoregressive Model forJoint Intent Detection and Slot Filling

SlotRefine: A Fast Non-Autoregressive Model for Joint Intent Detection and Slot Filling Reference Main paper to be cited (Di Wu et al., 2020) @article

Moore 34 Nov 03, 2022
A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population

DeepKE is a knowledge extraction toolkit supporting low-resource and document-level scenarios for entity, relation and attribute extraction. We provide comprehensive documents, Google Colab tutorials

ZJUNLP 1.6k Jan 05, 2023
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Lip to Speech Synthesis with Visual Context Attentional GAN This repository contains the PyTorch implementation of the following paper: Lip to Speech

6 Nov 02, 2022
Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models

Hyperparameter Optimization of Machine Learning Algorithms This code provides a hyper-parameter optimization implementation for machine learning algor

Li Yang 1.1k Dec 19, 2022
Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models

Explainable_FIQA_WITH_AMVA Note This is the official repository of the paper: Explainability of the Implications of Supervised and Unsupervised Face I

3 May 08, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023