MonoScene: Monocular 3D Semantic Scene Completion

Overview

MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page]
Anh-Quan Cao, Raoul de Charette
Inria, Paris, France

If you find this work useful, please cite our paper:

@misc{cao2021monoscene,
      title={MonoScene: Monocular 3D Semantic Scene Completion}, 
      author={Anh-Quan Cao and Raoul de Charette},
      year={2021},
      eprint={2112.00726},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Code and models will be released soon. Please watch this repo for updates.

Demo

SemanticKITTI KITTI-360
(Trained on SemanticKITTI)

NYUv2

Comments
  • TypeError: 'int' object is not subscriptable

    TypeError: 'int' object is not subscriptable

    (monoscene) [email protected]:~/workplace/MonoScene$ python monoscene/scripts/train_monoscene.py dataset=kitti enable_log=true kitti_root=$KITTI_ROOT kitti_preprocess_root=$KITTI_PREPROCESS kitti_logdir=$KITTI_LOG n_gpus=2 batch_size=2 ^[[Dexp_kitti_1_FrusSize_8_nRelations4_WD0.0001_lr0.0001_CEssc_geoScalLoss_semScalLoss_fpLoss_CERel_3DCRP_Proj_2_4_8 n_relations (32, 32, 4) Traceback (most recent call last): File "monoscene/scripts/train_monoscene.py", line 118, in main class_weights=class_weights, File "/home/ruidong/workplace/MonoScene/monoscene/models/monoscene.py", line 80, in init context_prior=context_prior, File "/home/ruidong/workplace/MonoScene/monoscene/models/unet3d_kitti.py", line 62, in init self.feature * 4, self.feature * 4, size_l3, bn_momentum=bn_momentum File "/home/ruidong/workplace/MonoScene/monoscene/models/CRP3D.py", line 15, in init self.flatten_size = size[0] * size[1] * size[2] TypeError: 'int' object is not subscriptable

    Set the environment variable HYDRA_FULL_ERROR=1 for a complete stack trace.

    opened by DipDipPotatoChips 21
  • Questions about cross-entropy loss

    Questions about cross-entropy loss

    Dear authors, thanks for your great works! In your paper, you say that "the losses are computed only where y is defined". I wonder if this means you do not add supervision on non-occupied voxels and only use multi-class classification loss on occupied voxels ? If this holds true, why the model can identify which voxels are occupied ?

    opened by weiyithu 13
  • about test

    about test

    FileNotFoundError: [Errno 2] No such file or directory: '/home/ruidong/workplace/MonoScene/trained_models/monoscene_kitti.ckpt'

    the last printing of trainning is: Epoch 29: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 2325/2325 [1:06:52<00:00, 1.73s/it, loss=3.89, v_num=]

    opened by DipDipPotatoChips 13
  • Cuda out of memory

    Cuda out of memory

    Dear author, you said that Use smaller 2D backbone by chaning the basemodel_name and num_features The pretrained model name is here. You can try the efficientnet B5 can reduces the memory, I want to know the B5 weight and the value of num_features?

    opened by lulianLiu 12
  • Pretrained models on other dataset: NuScenes

    Pretrained models on other dataset: NuScenes

    Hi @anhquancao,

    Thanks so much for your paper and your implementation. Do you have your pretrained model on the NuScenes? If yes, could you share it? The reason is that I want to build upon your work on the NuScenes dataset but there exists a large domain gap between the two (SemanticKITTI and NuScenes) so the pretrained on SemanticKITTI works does not well on the NuScenes.

    Thanks!

    opened by ducminhkhoi 11
  • failed to run test

    failed to run test

    When I try to run this script, it crashed without giving any information: python monoscene/scripts/generate_output.py +output_path=$MONOSCENE_OUTPUT dataset=kitti_360 +kitti_360_root=$KITTI_360_ROOT +kitti_360_sequence=2013_05_28_drive_0028_sync n_gpus=1 batch_size=1

    image

    Any suggestion will be much appreciated.

    opened by ChiyuanFeng 9
  • cannot find calib

    cannot find calib

    PS F:\Studying\CY-Workspace\MonoScene-master> python monoscene/scripts/eval_monoscene.py dataset=kitti kitti_root=$KITTI_ROOT kitti_preprocess_root=$KITTI_PREPROCESS n_gpus=1 batch_size= 1 GPU available: True, used: True TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs n_relations 4 Using cache found in C:\Users\DELL/.cache\torch\hub\rwightman_gen-efficientnet-pytorch_master Loading base model ()...Done. Removing last two layers (global_pool & classifier). Building Encoder-Decoder model..Done. Traceback (most recent call last): File "monoscene/scripts/eval_monoscene.py", line 71, in main data_module.setup() File "F:\anaconda\envs\monoscene\lib\site-packages\pytorch_lightning\core\datamodule.py", line 440, in wrapped_fn fn(*args, **kwargs) File "F:\Studying\CY-Workspace\MonoScene-master\monoscene\scripts/../..\monoscene\data\semantic_kitti\kitti_dm.py", line 34, in setup color_jitter=(0.4, 0.4, 0.4), File "F:\Studying\CY-Workspace\MonoScene-master\monoscene\scripts/../..\monoscene\data\semantic_kitti\kitti_dataset.py", line 60, in init os.path.join(self.root, "dataset", "sequences", sequence, "calib.txt") File "F:\Studying\CY-Workspace\MonoScene-master\monoscene\scripts/../..\monoscene\data\semantic_kitti\kitti_dataset.py", line 193, in read_calib with open(calib_path, "r") as f: FileNotFoundError: [Errno 2] No such file or directory: 'dataset\sequences\00\calib.txt'

    opened by cyaccpect 9
  • about visualization

    about visualization

    (monoscene) [email protected]:~/workplace/MonoScene$ python monoscene/scripts/visualization/kitti_vis_pred.py +file=/home/ruidong/workplace/MonoScene/outputs/kitti/08/000000.pkl +dataset=kitt monoscene/scripts/visualization/kitti_vis_pred.py:23: DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations coords_grid = coords_grid.astype(np.float) Traceback (most recent call last): File "monoscene/scripts/visualization/kitti_vis_pred.py", line 196, in main d=7, File "monoscene/scripts/visualization/kitti_vis_pred.py", line 75, in draw grid_coords = np.vstack([grid_coords.T, voxels.reshape(-1)]).T AttributeError: 'tuple' object has no attribute 'T'

    Set the environment variable HYDRA_FULL_ERROR=1 for a complete stack trace.

    opened by DipDipPotatoChips 9
  • Porting the work of this paper to a new dataset

    Porting the work of this paper to a new dataset

    Hello author, first of all thank you for your great work. I want to directly apply your work to the nuscenes dataset, is it possible? Does the nuscenes dataset need point cloud data to assist in generating voxel data?

    opened by yukaizhou 8
  • Can you help me in another paper?

    Can you help me in another paper?

    Hello! Last year, when you reproduced the code SISC(https://github.com/OPEN-AIR-SUN/SISC), you found a bug and solve it! Now, I get the same problem too,can you tell me how to solve it ! Thank you very much!

    opened by WkangLiu 8
  • ImportError: cannot import name 'get_num_classes' from 'torchmetrics.utilities.data'

    ImportError: cannot import name 'get_num_classes' from 'torchmetrics.utilities.data'

    there is something wrong with my machine and I reinstall my ubuntu. I re-gitclone the code and just keep the data.but when I follow the readme to do installation,it print:

    (monoscene) [email protected]:~/workplace/MonoScene$ pip install -e ./ Obtaining file:///home/potato/workplace/MonoScene Installing collected packages: monoscene Running setup.py develop for monoscene Successfully installed monoscene-0.0.0 (monoscene) [email protected]:~/workplace/MonoScene$ python monoscene/scripts/train_monoscene.py dataset=kitti enable_log=true kitti_root=$KITTI_ROOT kitti_preprocess_root=$KITTI_PREPROCESS kitti_logdir=$KITTI_LOG n_gpus=1 batch_size=1 sem_scal_loss=False Traceback (most recent call last): File "monoscene/scripts/train_monoscene.py", line 1, in from monoscene.data.semantic_kitti.kitti_dm import KittiDataModule File "/home/potato/workplace/MonoScene/monoscene/data/semantic_kitti/kitti_dm.py", line 3, in import pytorch_lightning as pl File "/home/potato/anaconda3/envs/monoscene/lib/python3.7/site-packages/pytorch_lightning/init.py", line 20, in from pytorch_lightning import metrics # noqa: E402 File "/home/potato/anaconda3/envs/monoscene/lib/python3.7/site-packages/pytorch_lightning/metrics/init.py", line 15, in from pytorch_lightning.metrics.classification import ( # noqa: F401 File "/home/potato/anaconda3/envs/monoscene/lib/python3.7/site-packages/pytorch_lightning/metrics/classification/init.py", line 14, in from pytorch_lightning.metrics.classification.accuracy import Accuracy # noqa: F401 File "/home/potato/anaconda3/envs/monoscene/lib/python3.7/site-packages/pytorch_lightning/metrics/classification/accuracy.py", line 18, in from pytorch_lightning.metrics.utils import deprecated_metrics, void File "/home/potato/anaconda3/envs/monoscene/lib/python3.7/site-packages/pytorch_lightning/metrics/utils.py", line 22, in from torchmetrics.utilities.data import get_num_classes as _get_num_classes ImportError: cannot import name 'get_num_classes' from 'torchmetrics.utilities.data' (/home/potato/anaconda3/envs/monoscene/lib/python3.7/site-packages/torchmetrics/utilities/data.py)

    opened by DipDipPotatoChips 7
Releases(v0.1)
Owner
Codes from Computer Vision group of RITS Team, Inria
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

Prometheus exporter for Cisco Unified Computing System (UCS) Manager

prometheus-ucs-exporter Overview Use metrics from the UCS API to export relevant metrics to Prometheus This repository is a fork of Drew Stinnett's or

Marshall Wace 6 Nov 07, 2022
A curated list of the latest breakthroughs in AI (in 2021) by release date with a clear video explanation, link to a more in-depth article, and code.

2021: A Year Full of Amazing AI papers- A Review 📌 A curated list of the latest breakthroughs in AI by release date with a clear video explanation, l

Louis-François Bouchard 2.9k Dec 31, 2022
A simple, fast, and efficient object detector without FPN

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides an implementation for

789 Jan 09, 2023
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks

Simple implementation of Equivariant GNN A short implementation of E(n) Equivariant Graph Neural Networks for HOMO energy prediction. Just 50 lines of

Arsenii Senya Ashukha 97 Dec 23, 2022
TensorFlow implementation for Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How

Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How TensorFlow implementation for Bayesian Modeling and Unce

Shen Lab at Texas A&M University 8 Sep 02, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
Fedlearn支持前沿算法研发的Python工具库 | Fedlearn algorithm toolkit for researchers

FedLearn-algo Installation Development Environment Checklist python3 (3.6 or 3.7) is required. To configure and check the development environment is c

89 Nov 14, 2022
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

1 Jun 02, 2022
A disassembler for the RP2040 Programmable I/O State-machine!

piodisasm A disassembler for the RP2040 Programmable I/O State-machine! Usage Just run piodisasm.py on a file that contains the PIO code as hex! (Such

Ghidra Ninja 29 Dec 06, 2022
The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

Bingoren 49 Dec 01, 2022
Source code and data in paper "MDFEND: Multi-domain Fake News Detection (CIKM'21)"

MDFEND: Multi-domain Fake News Detection This is an official implementation for MDFEND: Multi-domain Fake News Detection which has been accepted by CI

Rich 40 Dec 18, 2022
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
Easy to use Python camera interface for NVIDIA Jetson

JetCam JetCam is an easy to use Python camera interface for NVIDIA Jetson. Works with various USB and CSI cameras using Jetson's Accelerated GStreamer

NVIDIA AI IOT 358 Jan 02, 2023
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022