BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

Related tags

Deep LearningBADet
Overview

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

As of Apr. 17th, 2021, 1st place in KITTI BEV detection leaderboard and on par performance on KITTI 3D detection leaderboard. The detector can run at 7.1 FPS.

Authors: Rui Qian, Xin Lai, Xirong Li

[arXiv] [elsevier]

Citation

If you find this code useful in your research, please consider citing our work:

@InProceedings{qian2022pr,
author = {Rui Qian and Xin Lai and Xirong Li},
title = {BADet: Boundary-Aware 3D Object Detection from Point Clouds},
booktitle = {Pattern Recognition (PR)},
month = {January},
year = {2022}
}
@misc{qian20213d,
title={3D Object Detection for Autonomous Driving: A Survey}, 
author={Rui Qian and Xin Lai and Xirong Li},
year={2021},
eprint={2106.10823},
archivePrefix={arXiv},
primaryClass={cs.CV}
}

Updates

2021-03-17: The performance (using 40 recall poisitions) on test set is as follows:

Car [email protected], 0.70, 0.70:
bbox AP:98.75, 95.61, 90.64
bev  AP:95.23, 91.32, 86.48 
3d   AP:89.28, 81.61, 76.58 
aos  AP:98.65, 95.34, 90.28 

Introduction

model Currently, existing state-of-the-art 3D object detectors are in two-stage paradigm. These methods typically comprise two steps: 1) Utilize a region proposal network to propose a handful of high-quality proposals in a bottom-up fashion. 2) Resize and pool the semantic features from the proposed regions to summarize RoI-wise representations for further refinement. Note that these RoI-wise representations in step 2) are considered individually as uncorrelated entries when fed to following detection headers. Nevertheless, we observe these proposals generated by step 1) offset from ground truth somehow, emerging in local neighborhood densely with an underlying probability. Challenges arise in the case where a proposal largely forsakes its boundary information due to coordinate offset while existing networks lack corresponding information compensation mechanism. In this paper, we propose $BADet$ for 3D object detection from point clouds. Specifically, instead of refining each proposal independently as previous works do, we represent each proposal as a node for graph construction within a given cut-off threshold, associating proposals in the form of local neighborhood graph, with boundary correlations of an object being explicitly exploited. Besides, we devise a lightweight Region Feature Aggregation Module to fully exploit voxel-wise, pixel-wise, and point-wise features with expanding receptive fields for more informative RoI-wise representations. We validate BADet both on widely used KITTI Dataset and highly challenging nuScenes Dataset. As of Apr. 17th, 2021, our BADet achieves on par performance on KITTI 3D detection leaderboard and ranks $1^{st}$ on $Moderate$ difficulty of $Car$ category on KITTI BEV detection leaderboard. The source code is available at https://github.com/rui-qian/BADet.

Dependencies

  • python3.5+
  • pytorch (tested on 1.1.0)
  • opencv
  • shapely
  • mayavi
  • spconv (v1.0)

Installation

  1. Clone this repository.
  2. Compile C++/CUDA modules in mmdet/ops by running the following command at each directory, e.g.
$ cd mmdet/ops/points_op
$ python3 setup.py build_ext --inplace
  1. Setup following Environment variables, you may add them to ~/.bashrc:
export NUMBAPRO_CUDA_DRIVER=/usr/lib/x86_64-linux-gnu/libcuda.so
export NUMBAPRO_NVVM=/usr/local/cuda/nvvm/lib64/libnvvm.so
export NUMBAPRO_LIBDEVICE=/usr/local/cuda/nvvm/libdevice
export LD_LIBRARY_PATH=/home/qianrui/anaconda3/lib/python3.7/site-packages/spconv;

Data Preparation

  1. Download the 3D KITTI detection dataset from here. Data to download include:

    • Velodyne point clouds (29 GB): input data to VoxelNet
    • Training labels of object data set (5 MB): input label to VoxelNet
    • Camera calibration matrices of object data set (16 MB): for visualization of predictions
    • Left color images of object data set (12 GB): for visualization of predictions
  2. Create cropped point cloud and sample pool for data augmentation, please refer to SECOND.

  3. Split the training set into training and validation set according to the protocol here.

  4. You could run the following command to prepare Data:

$ python3 tools/create_data.py

[email protected]:~/qianrui/kitti$ tree -L 1
data_root = '/home/qr/qianrui/kitti/'
├── gt_database
├── ImageSets
├── kitti_dbinfos_train.pkl
├── kitti_dbinfos_trainval.pkl
├── kitti_infos_test.pkl
├── kitti_infos_train.pkl
├── kitti_infos_trainval.pkl
├── kitti_infos_val.pkl
├── train.txt
├── trainval.txt
├── val.txt
├── test.txt
├── training   <-- training data
|       ├── image_2
|       ├── label_2
|       ├── velodyne
|       └── velodyne_reduced
└── testing  <--- testing data
|       ├── image_2
|       ├── label_2
|       ├── velodyne
|       └── velodyne_reduced

Pretrained Model

You can download the pretrained model [Model][Archive], which is trained on the train split (3712 samples) and evaluated on the val split (3769 samples) and test split (7518 samples). The performance (using 11 recall poisitions) on validation set is as follows:

[40, 1600, 1408]
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 3769/3769, 7.1 task/s, elapsed: 533s, ETA:     0s
Car [email protected], 0.70, 0.70:
bbox AP:98.27, 90.22, 89.66
bev  AP:90.59, 88.85, 88.09
3d   AP:90.06, 85.75, 78.98
aos  AP:98.18, 89.98, 89.25
Car [email protected], 0.50, 0.50:
bbox AP:98.27, 90.22, 89.66
bev  AP:98.31, 90.21, 89.73
3d   AP:98.20, 90.11, 89.61
aos  AP:98.18, 89.98, 89.25

Quick demo

You could run the following command to evaluate the pretrained model:

cd mmdet/tools
# vim ../configs/car_cfg.py(modify score_thr=0.4, score_thr=0.3 for val split and test split respectively.)
python3 test.py ../configs/car_cfg.py ../saved_model_vehicle/epoch_50.pth
Model Archive Parameters Moderate(Car) Pretrained Model Predicts
BADet(val) [Link] 44.2 MB 86.21% [icloud drive] [Results]
BADet(test) [Link] 44.2 MB 81.61% [icloud drive] [Results]

Training

To train the BADet with single GPU, run the following command:

cd mmdet/tools
python3 train.py ../configs/car_cfg.py

Inference

To evaluate the model, run the following command:

cd mmdet/tools
python3 test.py ../configs/car_cfg.py ../saved_model_vehicle/latest.pth

Acknowledgement

The code is devloped based on mmdetection, some part of codes are borrowed from SA-SSD, SECOND, and PointRCNN.

Contact

If you have questions, you can contact [email protected].

Owner
Rui Qian
Rui Qian
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http

Guanghan Ning 83 Nov 21, 2022
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

Zhenfang Chen 31 Jan 06, 2023
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
A simple Neural Network that predicts the label for a series of handwritten digits

Neural_Network A simple Neural Network that predicts the label for a series of handwritten numbers This program tries to predict the label (1,2,3 etc.

Ty 1 Dec 18, 2021
An implementation of an abstract algebra for music tones (pitches).

nbdev template Use this template to more easily create your nbdev project. If you are using an older version of this template, and want to upgrade to

Open Music Kit 0 Oct 10, 2022
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Jurijs Nazarovs 7 Nov 26, 2022
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
Dense Unsupervised Learning for Video Segmentation (NeurIPS*2021)

Dense Unsupervised Learning for Video Segmentation This repository contains the official implementation of our paper: Dense Unsupervised Learning for

Visual Inference Lab @TU Darmstadt 173 Dec 26, 2022
Using Python to Play Cyberpunk 2077

CyberPython 2077 Using Python to Play Cyberpunk 2077 This repo will contain code from the Cyberpython 2077 video series on Youtube (youtube.

Harrison 118 Oct 18, 2022
Official implementation of "An Image is Worth 16x16 Words, What is a Video Worth?" (2021 paper)

An Image is Worth 16x16 Words, What is a Video Worth? paper Official PyTorch Implementation Gilad Sharir, Asaf Noy, Lihi Zelnik-Manor DAMO Academy, Al

213 Nov 12, 2022
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
ACV is a python library that provides explanations for any machine learning model or data.

ACV is a python library that provides explanations for any machine learning model or data. It gives local rule-based explanations for any model or data and different Shapley Values for tree-based mod

Salim Amoukou 85 Dec 27, 2022
Pytorch implementation of OCNet series and SegFix.

openseg.pytorch News 2021/09/14 MMSegmentation has supported our ISANet and refer to ISANet for more details. 2021/08/13 We have released the implemen

openseg-group 1.1k Dec 23, 2022
PyTorch implementation of "Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning"

Transparency-by-Design networks (TbD-nets) This repository contains code for replicating the experiments and visualizations from the paper Transparenc

David Mascharka 351 Nov 18, 2022
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

19 Dec 17, 2022
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022