Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Overview

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image

This repository contains the code for the following paper:

  • R. Hu, N. Ravi, A. Berg, D. Pathak, Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image. in ICCV, 2021. (PDF)
@inproceedings{hu2021worldsheet,
  title={Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image},
  author={Hu, Ronghang and Ravi, Nikhila and Berg, Alex and Pathak, Deepak},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
  year={2021}
}

Project Page: https://worldsheet.github.io/

Installation

Our Worldsheet implementation is based on MMF and PyTorch3D. This repository is adapted from the MMF repository (https://github.com/facebookresearch/mmf).

This code is designed to be run on GPU, CPU training/inference is not supported.

  1. Create a new conda environment:
conda create -n worldsheet python=3.8
conda activate worldsheet
  1. Download this repository or clone with Git, and then enter the root directory of the repository git clone https://github.com/facebookresearch/worldsheet.git && cd worldsheet

  2. Install the MMF dependencies: pip install -r requirements.txt

  3. Install PyTorch3D as follows (we used v0.2.5):

# Install using conda
conda install -c pytorch3d pytorch3d=0.2.5

# Or install from GitHub directly
git clone https://github.com/facebookresearch/pytorch3d.git && cd pytorch3d
git checkout v0.2.5
rm -rf build/ **/*.so
FORCE_CUDA=1 pip install -e .
cd ..

# or pip install from github 
pip install "git+https://github.com/facebookresearch/[email protected]"
  1. Extra dependencies
pip install scikit-image

Train and evaluate on the Matterport3D and Replica datasets

In this work, we use the same Matterport3D and Replica datasets as in SynSin, based on the Habitat environment. In our codebase and config files, these two datasets are referred to as synsin_habitat (synsin_mp3d and synsin_replica) (note that here the synsin_ prefix only refers to the datasets used in SynSin; the underlying model being trained and evaluated is our Worldsheet model, not SynSin).

Extract the image frames

In our project, we extract those training, validation, and test image frames and camera matrices using the SynSin codebase for direct comparisons with SynSin and other previous work.

Please install our modified SynSin codebase from synsin_for_data_and_eval branch of this repository to extract the Matterport3D and Replica image frames:

git clone https://github.com/facebookresearch/worldsheet.git -b synsin_for_data_and_eval synsin && cd synsin

and install habitat-sim and habitat-api as additional SynSin dependencies following the official SynSin installation instructions. For convenience, we provide the corresponding versions of habitat-sim and habitat-api for SynSin in habitat-sim-for-synsin and habitat-sim-for-synsin branches of this repository.

After installing the SynSin codebase from synsin_for_data_and_eval branch, set up Matterport3D and Replica datasets following the instructions in the SynSin codebase, and run the following to save the image frames to disk (you can change MP3D_SAVE_IMAGE_DIR to a location on your machine).

# this is where Matterport3D and Replica image frames will be extracted
export MP3D_SAVE_IMAGE_DIR=/checkpoint/ronghanghu/neural_rendering_datasets

# clone the SynSin repo from `synsin_for_data_and_eval` branch
git clone https://github.com/facebookresearch/worldsheet.git -b synsin_for_data_and_eval ../synsin
cd ../synsin

# Matterport3D train
DEBUG="" python evaluation/dump_train_to_mmf.py \
     --result_folder ${MP3D_SAVE_IMAGE_DIR}/synsin_mp3d/train \
     --old_model modelcheckpoints/mp3d/synsin.pth \
     --batch_size 8 --num_workers 10  --images_before_reset 1000
# Matterport3D val
DEBUG="" python evaluation/dump_val_to_mmf.py \
     --result_folder ${MP3D_SAVE_IMAGE_DIR}/synsin_mp3d/val \
     --old_model modelcheckpoints/mp3d/synsin.pth \
     --batch_size 8 --num_workers 10  --images_before_reset 200
# Matterport3D test
DEBUG="" python evaluation/dump_test_to_mmf.py \
     --result_folder ${MP3D_SAVE_IMAGE_DIR}/synsin_mp3d/test \
     --old_model modelcheckpoints/mp3d/synsin.pth \
     --batch_size 8 --num_workers 10  --images_before_reset 200
# Replica test
DEBUG="" python evaluation/dump_test_to_mmf.py \
     --result_folder ${MP3D_SAVE_IMAGE_DIR}/synsin_replica/test \
     --old_model modelcheckpoints/mp3d/synsin.pth \
     --batch_size 8 --num_workers 10  --images_before_reset 200 \
     --dataset replica
# Matterport3D val with 20-degree angle change
DEBUG="" python evaluation/dump_val_to_mmf.py \
     --result_folder ${MP3D_SAVE_IMAGE_DIR}/synsin_mp3d/val_jitter_angle20 \
     --old_model modelcheckpoints/mp3d/synsin.pth \
     --batch_size 8 --num_workers 10 --images_before_reset 200 \
     --render_ids 0 --jitter_quaternions_angle 20
# Matterport3D test with 20-degree angle change
DEBUG="" python evaluation/dump_test_to_mmf.py \
     --result_folder ${MP3D_SAVE_IMAGE_DIR}/synsin_mp3d/test_jitter_angle20 \
     --old_model modelcheckpoints/mp3d/synsin.pth \
     --batch_size 8 --num_workers 10 --images_before_reset 200 \
     --render_ids 0 --jitter_quaternions_angle 20

cd ../worldsheet  # assuming `synsin` repo and `worldsheet` repo are under the same parent directory

Training

Run the following to perform training and evaluation. In our experiments, we use a single machine with 4 NVIDIA V100-32GB GPUs.

# set to the same path as in image frame extraction above
export MP3D_SAVE_IMAGE_DIR=/checkpoint/ronghanghu/neural_rendering_datasets

# train the scene mesh prediction in Worldsheet
./run_mp3d_and_replica/train_mp3d.sh mp3d_nodepth_perceptual_l1laplacian

# train the inpainter with frozen scene mesh prediction
./run_mp3d_and_replica/train_mp3d.sh mp3d_nodepth_perceptual_l1laplacian_inpaintGonly_freezemesh

Pretrained models

Instead of performing the training above, one can also directly download the pretrained models via

./run_mp3d_and_replica/download_pretrained_models.sh

and run the evaluation below.

Evaluation

The evaluation scripts below will print the performance (PSNR, SSIM, Perc-Sim) on different test data.

Evaluate on the default test sets with the same camera changes as the training data (Table 1):

# set to the same path as in image frame extraction above
export MP3D_SAVE_IMAGE_DIR=/checkpoint/ronghanghu/neural_rendering_datasets

# Matterport3D, without inpainter (Table 1 line 6)
./run_mp3d_and_replica/eval_mp3d_test_iter.sh mp3d_nodepth_perceptual_l1laplacian 40000

# Matterport3D, full model (Table 1 line 7)
./run_mp3d_and_replica/eval_mp3d_test_iter.sh mp3d_nodepth_perceptual_l1laplacian_inpaintGonly_freezemesh 40000

# Replica, full model (Table 1 line 7)
./run_mp3d_and_replica/eval_replica_test_iter.sh mp3d_nodepth_perceptual_l1laplacian_inpaintGonly_freezemesh 40000

Evaluate the full model on 2X camera changes (Table 2):

# set to the same path as in image frame extraction above
export MP3D_SAVE_IMAGE_DIR=/checkpoint/ronghanghu/neural_rendering_datasets

# Matterport3D, without inpainter (Table 2 line 4)
./run_mp3d_and_replica/eval_mp3d_test_jitter_angle20_iter.sh mp3d_nodepth_perceptual_l1laplacian 40000

# Matterport3D, full model (Table 2 line 5)
./run_mp3d_and_replica/eval_mp3d_test_jitter_angle20_iter.sh mp3d_nodepth_perceptual_l1laplacian_inpaintGonly_freezemesh 40000

# Replica, full model (Table 2 line 5)
./run_mp3d_and_replica/eval_replica_test_jitter_angle20_iter.sh mp3d_nodepth_perceptual_l1laplacian_inpaintGonly_freezemesh 40000

Visualization

One can visualize the model predictions using the script run_mp3d_and_replica/visualize_mp3d_val_iter.sh to visualize the Matterport3D validation set (and this script can be modified to visualize other splits). For example, run the following to visualize the predictions from the full model:

export MP3D_SAVE_IMAGE_DIR=/checkpoint/ronghanghu/neural_rendering_datasets

./run_mp3d_and_replica/visualize_mp3d_val_iter.sh mp3d_nodepth_perceptual_l1laplacian_inpaintGonly_freezemesh 40000

Then, you can inspect the predictions using the notebook run_mp3d_and_replica/visualize_predictions.ipynb.

Train and evaluate on the RealEstate10K dataset

In this work, we use the same RealEstate10K dataset as in SynSin.

Setting up the RealEstate10K dataset

Please set up the dataset following the instructions in SynSin. The scripts below assumes this dataset has been downloaded to /checkpoint/ronghanghu/neural_rendering_datasets/realestate10K/RealEstate10K/frames/. You can modify its path in mmf/configs/datasets/synsin_realestate10k/defaults.yaml.

Training

Run the following to perform the training and evaluation. In our experiments, we use a single machine with 4 NVIDIA V100-32GB GPUs.

# train 33x33 mesh
./run_realestate10k/train.sh realestate10k_dscale2_lowerL1_200

# initialize 65x65 mesh from trained 33x33 mesh
python ./run_realestate10k/init_65x65_from_33x33.py \
    --input ./save/synsin_realestate10k/realestate10k_dscale2_lowerL1_200/models/model_50000.ckpt \
    --output ./save/synsin_realestate10k/realestate10k_dscale2_stride4ft_lowerL1_200/init.ckpt

# train 65x65 mesh
./run_realestate10k/train.sh realestate10k_dscale2_stride4ft_lowerL1_200

Pretrained models

Instead of performing the training above, one can also directly download the pretrained models via

./run_realestate10k/download_pretrained_models.sh

and run the evaluation below.

Evaluation

Note: as mentioned in the paper, following the evaluation protocol of SynSin on RealEstate10K, the best metrics of two separate predictions based on each view were reported for single-view methods. We follow this evaluation protocol for consistency with SynSin on RealEstate10K in Table 3. We also report averaged metrics over all predictions in the supplemental.

The script below evaluates the performance on RealEstate10K with averaged metrics over all predictions, as reported in the supplemental Table C.1:

# Evaluate 33x33 mesh (Supplemental Table C.1 line 6)
./run_realestate10k/eval_test_iter.sh realestate10k_dscale2_lowerL1_200 50000

# Evaluate 65x65 mesh (Supplemental Table C.1 line 7)
./run_realestate10k/eval_test_iter.sh realestate10k_dscale2_stride4ft_lowerL1_200 50000

To evaluate with the SynSin protocol using the best metrics of two separate predictions as in Table 3, one needs to first save the predicted novel views as PNG files, and then use the SynSin codebase for evaluation. Please install our modified SynSin codebase from synsin_for_data_and_eval branch of this repository following the Matterport3D and Replica instructions above. Then evaluate as follows:

# Save prediction PNGs for 33x33 mesh
./run_realestate10k/write_pred_pngs_test_iter.sh realestate10k_dscale2_lowerL1_200 50000

# Save prediction PNGs for 65x65 mesh
./run_realestate10k/write_pred_pngs_test_iter.sh realestate10k_dscale2_stride4ft_lowerL1_200 50000

cd ../synsin  # assuming `synsin` repo and `worldsheet` repo under the same directory

# Evaluate 33x33 mesh (Table 3 line 9)
python evaluation/evaluate_realestate10k_all.py \
    --take_every_other \
    --folder ../worldsheet/save/prediction_synsin_realestate10k/realestate10k_dscale2_lowerL1_200/50000/realestate10k_test

# Evaluate 65x65 mesh (Table 3 line 10)
python evaluation/evaluate_realestate10k_all.py \
    --take_every_other \
    --folder ../worldsheet/save/prediction_synsin_realestate10k/realestate10k_dscale2_stride4ft_lowerL1_200/50000/realestate10k_test

(The --take_every_other flag above performs best-of-two-prediction evaluation; without this flag, it should give the average-over-all-prediction results as in Supplemental Table C.1.)

Visualization

One can visualize the model's predictions using the script run_realestate10k/eval_val_iter.sh for the RealEstate10K validation set (run_realestate10k/visualize_test_iter.sh for the test set). For example, run the following to visualize the predictions from the 65x65 mesh:

./run_realestate10k/visualize_val_iter.sh realestate10k_dscale2_stride4ft_lowerL1_200 50000

Then, you can inspect the predictions using notebook run_realestate10k/visualize_predictions.ipynb.

We also provide a notebook for interactive predictions in run_realestate10k/make_interactive_videos.ipynb, where one can walk through the scene and generate a continuous video of the predicted novel views.

Wrapping sheets with external depth prediction

In Sec. 4.3 of the paper, we test the limits of wrapping a mesh sheet over a large variety of images. We provide a notebook for this analysis in external_depth/make_interactive_videos_with_midas_depth.ipynb, where one can interactively generate a continuous video of the predicted novel views.

The structure of Worldsheet codebase

Worldsheet is implemented as a MMF model. This codebase largely follows the structure of typical MMF models and datasets.

The Worldsheet model is defined under the MMF model name mesh_renderer in the following files:

  • model definition: mmf/models/mesh_renderer.py
  • mesh and rendering utilities, losses, and metrics: mmf/neural_rendering/
  • config base: mmf/configs/models/mesh_renderer/defaults.yaml

The experimental config files for the Matterport and Replica experiments are in the following files:

  • Habitat dataset definition: mmf/datasets/builders/synsin_habitat/
  • Habitat dataset config base: mmf/configs/datasets/synsin_habitat/defaults.yaml
  • experimental configs: projects/neural_rendering/configs/synsin_habitat/

The experimental config files for the RealEstate10K experiments are in the following files:

  • RealEstate10K dataset definition: mmf/datasets/builders/synsin_realestate10k/
  • RealEstate10K dataset config base: mmf/configs/datasets/synsin_realestate10k/defaults.yaml
  • experimental configs: projects/neural_rendering/configs/synsin_realestate10k/

Acknowledgements

This repository is modified from the MMF library from Facebook AI Research. A large part of the codebase has been modified from the pix2pixHD codebase. Our PSNR, SSIM, and Perc-Sim evaluation scripts are modified from the SynSin codebase and we also use SynSin for image frame extraction on Matterport3D and Replica. A part of our differentiable rendering implementation is built upon the Softmax Splatting codebase. All appropriate licenses are included in the files in which the code is used.

Licence

Worldsheet is released under the BSD License.

Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.

Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne

11 Dec 14, 2022
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
High frequency AI based algorithmic trading module.

Flow Flow is a high frequency algorithmic trading module that uses machine learning to self regulate and self optimize for maximum return. The current

59 Dec 14, 2022
Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

CLIP-Guided-Diffusion Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab. Original colab notebooks by Ka

Nerdy Rodent 336 Dec 09, 2022
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching

Minz Won 50 Dec 05, 2022
Python Environment for Bayesian Learning

Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in

Abhik Shah 103 Jul 14, 2022
MLPs for Vision and Langauge Modeling (Coming Soon)

MLP Architectures for Vision-and-Language Modeling: An Empirical Study MLP Architectures for Vision-and-Language Modeling: An Empirical Study (Code wi

Yixin Nie 27 May 09, 2022
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning app

Yang Wenhan 117 Jan 03, 2023
Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

custom-cnn-fashion-mnist Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow. The following

Danielle Almeida 1 Mar 05, 2022
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Beijing ColorfulClouds Technology Co.,Ltd. 16 Aug 07, 2022
Official code release for: EditGAN: High-Precision Semantic Image Editing

Official code release for: EditGAN: High-Precision Semantic Image Editing

565 Jan 05, 2023
Sematic-Segmantation - Semantic Segmentation on MIT ADE20K dataset in PyTorch

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch impleme

Berat Eren Terzioğlu 4 Mar 22, 2022
Air Quality Prediction Using LSTM

AirQualityPredictionUsingLSTM In this Repo, i present to you the winning solution of smart gujarat hackathon 2019 where the task was to predict the qu

Deepak Nandwani 2 Dec 13, 2022
PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning PyTorch code for the ICCV 2021 paper: Always Be Dreaming: A New Approach f

49 Dec 21, 2022
Deep Two-View Structure-from-Motion Revisited

Deep Two-View Structure-from-Motion Revisited This repository provides the code for our CVPR 2021 paper Deep Two-View Structure-from-Motion Revisited.

Jianyuan Wang 145 Jan 06, 2023
A coin flip game in which you can put the amount of money below or equal to 1000 and then choose heads or tail

COIN_FLIPPY ##This is a simple example package. You can use Github-flavored Markdown to write your content. Coinflippy A coin flip game in which you c

2 Dec 26, 2021