Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Overview

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image

This repository contains the code for the following paper:

  • R. Hu, N. Ravi, A. Berg, D. Pathak, Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image. in ICCV, 2021. (PDF)
@inproceedings{hu2021worldsheet,
  title={Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image},
  author={Hu, Ronghang and Ravi, Nikhila and Berg, Alex and Pathak, Deepak},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
  year={2021}
}

Project Page: https://worldsheet.github.io/

Installation

Our Worldsheet implementation is based on MMF and PyTorch3D. This repository is adapted from the MMF repository (https://github.com/facebookresearch/mmf).

This code is designed to be run on GPU, CPU training/inference is not supported.

  1. Create a new conda environment:
conda create -n worldsheet python=3.8
conda activate worldsheet
  1. Download this repository or clone with Git, and then enter the root directory of the repository git clone https://github.com/facebookresearch/worldsheet.git && cd worldsheet

  2. Install the MMF dependencies: pip install -r requirements.txt

  3. Install PyTorch3D as follows (we used v0.2.5):

# Install using conda
conda install -c pytorch3d pytorch3d=0.2.5

# Or install from GitHub directly
git clone https://github.com/facebookresearch/pytorch3d.git && cd pytorch3d
git checkout v0.2.5
rm -rf build/ **/*.so
FORCE_CUDA=1 pip install -e .
cd ..

# or pip install from github 
pip install "git+https://github.com/facebookresearch/[email protected]"
  1. Extra dependencies
pip install scikit-image

Train and evaluate on the Matterport3D and Replica datasets

In this work, we use the same Matterport3D and Replica datasets as in SynSin, based on the Habitat environment. In our codebase and config files, these two datasets are referred to as synsin_habitat (synsin_mp3d and synsin_replica) (note that here the synsin_ prefix only refers to the datasets used in SynSin; the underlying model being trained and evaluated is our Worldsheet model, not SynSin).

Extract the image frames

In our project, we extract those training, validation, and test image frames and camera matrices using the SynSin codebase for direct comparisons with SynSin and other previous work.

Please install our modified SynSin codebase from synsin_for_data_and_eval branch of this repository to extract the Matterport3D and Replica image frames:

git clone https://github.com/facebookresearch/worldsheet.git -b synsin_for_data_and_eval synsin && cd synsin

and install habitat-sim and habitat-api as additional SynSin dependencies following the official SynSin installation instructions. For convenience, we provide the corresponding versions of habitat-sim and habitat-api for SynSin in habitat-sim-for-synsin and habitat-sim-for-synsin branches of this repository.

After installing the SynSin codebase from synsin_for_data_and_eval branch, set up Matterport3D and Replica datasets following the instructions in the SynSin codebase, and run the following to save the image frames to disk (you can change MP3D_SAVE_IMAGE_DIR to a location on your machine).

# this is where Matterport3D and Replica image frames will be extracted
export MP3D_SAVE_IMAGE_DIR=/checkpoint/ronghanghu/neural_rendering_datasets

# clone the SynSin repo from `synsin_for_data_and_eval` branch
git clone https://github.com/facebookresearch/worldsheet.git -b synsin_for_data_and_eval ../synsin
cd ../synsin

# Matterport3D train
DEBUG="" python evaluation/dump_train_to_mmf.py \
     --result_folder ${MP3D_SAVE_IMAGE_DIR}/synsin_mp3d/train \
     --old_model modelcheckpoints/mp3d/synsin.pth \
     --batch_size 8 --num_workers 10  --images_before_reset 1000
# Matterport3D val
DEBUG="" python evaluation/dump_val_to_mmf.py \
     --result_folder ${MP3D_SAVE_IMAGE_DIR}/synsin_mp3d/val \
     --old_model modelcheckpoints/mp3d/synsin.pth \
     --batch_size 8 --num_workers 10  --images_before_reset 200
# Matterport3D test
DEBUG="" python evaluation/dump_test_to_mmf.py \
     --result_folder ${MP3D_SAVE_IMAGE_DIR}/synsin_mp3d/test \
     --old_model modelcheckpoints/mp3d/synsin.pth \
     --batch_size 8 --num_workers 10  --images_before_reset 200
# Replica test
DEBUG="" python evaluation/dump_test_to_mmf.py \
     --result_folder ${MP3D_SAVE_IMAGE_DIR}/synsin_replica/test \
     --old_model modelcheckpoints/mp3d/synsin.pth \
     --batch_size 8 --num_workers 10  --images_before_reset 200 \
     --dataset replica
# Matterport3D val with 20-degree angle change
DEBUG="" python evaluation/dump_val_to_mmf.py \
     --result_folder ${MP3D_SAVE_IMAGE_DIR}/synsin_mp3d/val_jitter_angle20 \
     --old_model modelcheckpoints/mp3d/synsin.pth \
     --batch_size 8 --num_workers 10 --images_before_reset 200 \
     --render_ids 0 --jitter_quaternions_angle 20
# Matterport3D test with 20-degree angle change
DEBUG="" python evaluation/dump_test_to_mmf.py \
     --result_folder ${MP3D_SAVE_IMAGE_DIR}/synsin_mp3d/test_jitter_angle20 \
     --old_model modelcheckpoints/mp3d/synsin.pth \
     --batch_size 8 --num_workers 10 --images_before_reset 200 \
     --render_ids 0 --jitter_quaternions_angle 20

cd ../worldsheet  # assuming `synsin` repo and `worldsheet` repo are under the same parent directory

Training

Run the following to perform training and evaluation. In our experiments, we use a single machine with 4 NVIDIA V100-32GB GPUs.

# set to the same path as in image frame extraction above
export MP3D_SAVE_IMAGE_DIR=/checkpoint/ronghanghu/neural_rendering_datasets

# train the scene mesh prediction in Worldsheet
./run_mp3d_and_replica/train_mp3d.sh mp3d_nodepth_perceptual_l1laplacian

# train the inpainter with frozen scene mesh prediction
./run_mp3d_and_replica/train_mp3d.sh mp3d_nodepth_perceptual_l1laplacian_inpaintGonly_freezemesh

Pretrained models

Instead of performing the training above, one can also directly download the pretrained models via

./run_mp3d_and_replica/download_pretrained_models.sh

and run the evaluation below.

Evaluation

The evaluation scripts below will print the performance (PSNR, SSIM, Perc-Sim) on different test data.

Evaluate on the default test sets with the same camera changes as the training data (Table 1):

# set to the same path as in image frame extraction above
export MP3D_SAVE_IMAGE_DIR=/checkpoint/ronghanghu/neural_rendering_datasets

# Matterport3D, without inpainter (Table 1 line 6)
./run_mp3d_and_replica/eval_mp3d_test_iter.sh mp3d_nodepth_perceptual_l1laplacian 40000

# Matterport3D, full model (Table 1 line 7)
./run_mp3d_and_replica/eval_mp3d_test_iter.sh mp3d_nodepth_perceptual_l1laplacian_inpaintGonly_freezemesh 40000

# Replica, full model (Table 1 line 7)
./run_mp3d_and_replica/eval_replica_test_iter.sh mp3d_nodepth_perceptual_l1laplacian_inpaintGonly_freezemesh 40000

Evaluate the full model on 2X camera changes (Table 2):

# set to the same path as in image frame extraction above
export MP3D_SAVE_IMAGE_DIR=/checkpoint/ronghanghu/neural_rendering_datasets

# Matterport3D, without inpainter (Table 2 line 4)
./run_mp3d_and_replica/eval_mp3d_test_jitter_angle20_iter.sh mp3d_nodepth_perceptual_l1laplacian 40000

# Matterport3D, full model (Table 2 line 5)
./run_mp3d_and_replica/eval_mp3d_test_jitter_angle20_iter.sh mp3d_nodepth_perceptual_l1laplacian_inpaintGonly_freezemesh 40000

# Replica, full model (Table 2 line 5)
./run_mp3d_and_replica/eval_replica_test_jitter_angle20_iter.sh mp3d_nodepth_perceptual_l1laplacian_inpaintGonly_freezemesh 40000

Visualization

One can visualize the model predictions using the script run_mp3d_and_replica/visualize_mp3d_val_iter.sh to visualize the Matterport3D validation set (and this script can be modified to visualize other splits). For example, run the following to visualize the predictions from the full model:

export MP3D_SAVE_IMAGE_DIR=/checkpoint/ronghanghu/neural_rendering_datasets

./run_mp3d_and_replica/visualize_mp3d_val_iter.sh mp3d_nodepth_perceptual_l1laplacian_inpaintGonly_freezemesh 40000

Then, you can inspect the predictions using the notebook run_mp3d_and_replica/visualize_predictions.ipynb.

Train and evaluate on the RealEstate10K dataset

In this work, we use the same RealEstate10K dataset as in SynSin.

Setting up the RealEstate10K dataset

Please set up the dataset following the instructions in SynSin. The scripts below assumes this dataset has been downloaded to /checkpoint/ronghanghu/neural_rendering_datasets/realestate10K/RealEstate10K/frames/. You can modify its path in mmf/configs/datasets/synsin_realestate10k/defaults.yaml.

Training

Run the following to perform the training and evaluation. In our experiments, we use a single machine with 4 NVIDIA V100-32GB GPUs.

# train 33x33 mesh
./run_realestate10k/train.sh realestate10k_dscale2_lowerL1_200

# initialize 65x65 mesh from trained 33x33 mesh
python ./run_realestate10k/init_65x65_from_33x33.py \
    --input ./save/synsin_realestate10k/realestate10k_dscale2_lowerL1_200/models/model_50000.ckpt \
    --output ./save/synsin_realestate10k/realestate10k_dscale2_stride4ft_lowerL1_200/init.ckpt

# train 65x65 mesh
./run_realestate10k/train.sh realestate10k_dscale2_stride4ft_lowerL1_200

Pretrained models

Instead of performing the training above, one can also directly download the pretrained models via

./run_realestate10k/download_pretrained_models.sh

and run the evaluation below.

Evaluation

Note: as mentioned in the paper, following the evaluation protocol of SynSin on RealEstate10K, the best metrics of two separate predictions based on each view were reported for single-view methods. We follow this evaluation protocol for consistency with SynSin on RealEstate10K in Table 3. We also report averaged metrics over all predictions in the supplemental.

The script below evaluates the performance on RealEstate10K with averaged metrics over all predictions, as reported in the supplemental Table C.1:

# Evaluate 33x33 mesh (Supplemental Table C.1 line 6)
./run_realestate10k/eval_test_iter.sh realestate10k_dscale2_lowerL1_200 50000

# Evaluate 65x65 mesh (Supplemental Table C.1 line 7)
./run_realestate10k/eval_test_iter.sh realestate10k_dscale2_stride4ft_lowerL1_200 50000

To evaluate with the SynSin protocol using the best metrics of two separate predictions as in Table 3, one needs to first save the predicted novel views as PNG files, and then use the SynSin codebase for evaluation. Please install our modified SynSin codebase from synsin_for_data_and_eval branch of this repository following the Matterport3D and Replica instructions above. Then evaluate as follows:

# Save prediction PNGs for 33x33 mesh
./run_realestate10k/write_pred_pngs_test_iter.sh realestate10k_dscale2_lowerL1_200 50000

# Save prediction PNGs for 65x65 mesh
./run_realestate10k/write_pred_pngs_test_iter.sh realestate10k_dscale2_stride4ft_lowerL1_200 50000

cd ../synsin  # assuming `synsin` repo and `worldsheet` repo under the same directory

# Evaluate 33x33 mesh (Table 3 line 9)
python evaluation/evaluate_realestate10k_all.py \
    --take_every_other \
    --folder ../worldsheet/save/prediction_synsin_realestate10k/realestate10k_dscale2_lowerL1_200/50000/realestate10k_test

# Evaluate 65x65 mesh (Table 3 line 10)
python evaluation/evaluate_realestate10k_all.py \
    --take_every_other \
    --folder ../worldsheet/save/prediction_synsin_realestate10k/realestate10k_dscale2_stride4ft_lowerL1_200/50000/realestate10k_test

(The --take_every_other flag above performs best-of-two-prediction evaluation; without this flag, it should give the average-over-all-prediction results as in Supplemental Table C.1.)

Visualization

One can visualize the model's predictions using the script run_realestate10k/eval_val_iter.sh for the RealEstate10K validation set (run_realestate10k/visualize_test_iter.sh for the test set). For example, run the following to visualize the predictions from the 65x65 mesh:

./run_realestate10k/visualize_val_iter.sh realestate10k_dscale2_stride4ft_lowerL1_200 50000

Then, you can inspect the predictions using notebook run_realestate10k/visualize_predictions.ipynb.

We also provide a notebook for interactive predictions in run_realestate10k/make_interactive_videos.ipynb, where one can walk through the scene and generate a continuous video of the predicted novel views.

Wrapping sheets with external depth prediction

In Sec. 4.3 of the paper, we test the limits of wrapping a mesh sheet over a large variety of images. We provide a notebook for this analysis in external_depth/make_interactive_videos_with_midas_depth.ipynb, where one can interactively generate a continuous video of the predicted novel views.

The structure of Worldsheet codebase

Worldsheet is implemented as a MMF model. This codebase largely follows the structure of typical MMF models and datasets.

The Worldsheet model is defined under the MMF model name mesh_renderer in the following files:

  • model definition: mmf/models/mesh_renderer.py
  • mesh and rendering utilities, losses, and metrics: mmf/neural_rendering/
  • config base: mmf/configs/models/mesh_renderer/defaults.yaml

The experimental config files for the Matterport and Replica experiments are in the following files:

  • Habitat dataset definition: mmf/datasets/builders/synsin_habitat/
  • Habitat dataset config base: mmf/configs/datasets/synsin_habitat/defaults.yaml
  • experimental configs: projects/neural_rendering/configs/synsin_habitat/

The experimental config files for the RealEstate10K experiments are in the following files:

  • RealEstate10K dataset definition: mmf/datasets/builders/synsin_realestate10k/
  • RealEstate10K dataset config base: mmf/configs/datasets/synsin_realestate10k/defaults.yaml
  • experimental configs: projects/neural_rendering/configs/synsin_realestate10k/

Acknowledgements

This repository is modified from the MMF library from Facebook AI Research. A large part of the codebase has been modified from the pix2pixHD codebase. Our PSNR, SSIM, and Perc-Sim evaluation scripts are modified from the SynSin codebase and we also use SynSin for image frame extraction on Matterport3D and Replica. A part of our differentiable rendering implementation is built upon the Softmax Splatting codebase. All appropriate licenses are included in the files in which the code is used.

Licence

Worldsheet is released under the BSD License.

Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)

Unsupervised Depth Completion with Calibrated Backprojection Layers PyTorch implementation of Unsupervised Depth Completion with Calibrated Backprojec

80 Dec 13, 2022
Deep Learning to Improve Breast Cancer Detection on Screening Mammography

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Deep Learning to Improve Breast

Li Shen 305 Jan 03, 2023
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
LibMTL: A PyTorch Library for Multi-Task Learning

LibMTL LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and AP

765 Jan 06, 2023
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
wgan, wgan2(improved, gp), infogan, and dcgan implementation in lasagne, keras, pytorch

Generative Adversarial Notebooks Collection of my Generative Adversarial Network implementations Most codes are for python3, most notebooks works on C

tjwei 1.5k Dec 16, 2022
the official implementation of the paper "Isometric Multi-Shape Matching" (CVPR 2021)

Isometric Multi-Shape Matching (IsoMuSh) Paper-CVF | Paper-arXiv | Video | Code Citation If you find our work useful in your research, please consider

Maolin Gao 9 Jul 17, 2022
System Design course at HSE (2021)

System Design course at HSE (2021) Wiki-страница курса Структура репозитория: slides - директория с презентациями с занятий tasks - материалы для выпо

22 Dec 25, 2022
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021.

PHDimGeneralization Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021. Overvie

Tolga Birdal 13 Nov 08, 2022
A Streamlit component to render ECharts.

Streamlit - ECharts A Streamlit component to display ECharts. Install pip install streamlit-echarts Usage This library provides 2 functions to display

Fanilo Andrianasolo 290 Dec 30, 2022
A spherical CNN for weather forecasting

DeepSphere-Weather - Deep Learning on the sphere for weather/climate applications. The code in this repository provides a scalable and flexible framew

DeepSphere 47 Dec 25, 2022
State of the Art Neural Networks for Generative Deep Learning

pyradox-generative State of the Art Neural Networks for Generative Deep Learning Table of Contents pyradox-generative Table of Contents Installation U

Ritvik Rastogi 8 Sep 29, 2022
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
Official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation

SegPC-2021 This is the official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation by

Datascience IIT-ISM 13 Dec 14, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022