Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Overview

Mind Your Outliers!

Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering
Siddharth Karamcheti, Ranjay Krishna, Li Fei-Fei, Christopher D. Manning
Annual Meeting for the Association of Computational Linguistics (ACL-IJCNLP) 2021.

Code & Experiments for training various models and performing active learning on a variety of different VQA datasets and splits. Additional code for creating and visualizing dataset maps, for qualitative analysis!

If there are any trained models you want access to that aren't easy for you to train, please let me know and I will do my best to get them to you. Unfortunately finding a hosting solution for 1.8TB of checkpoints hasn't been easy 😅 .


Quickstart

Clones vqa-outliers to the current working directory, then walks through dependency setup, mostly leveraging the environments/environment- files. Assumes conda is installed locally (and is on your path!). Follow the directions here to install conda (Anaconda or Miniconda) if not.

We provide two installation directions -- one set of instructions for CUDA-equipped machines running Linux w/ GPUs (for training), and another for CPU-only machines (e.g., MacOS, Linux) geared towards local development and in case GPUs are not available.

The existing GPU YAML File is geared for CUDA 11.0 -- if you have older GPUs, file an issue, and I'll create an appropriate conda configuration!

Setup Instructions

# Clone `vqa-outliers` Repository and run Conda Setup
git clone https://github.com/siddk/vqa-outliers.git
cd vqa-outliers

# Ensure you're using the appropriate hardware config!
conda env create -f environments/environment-{cpu, gpu}.yaml
conda activate vqa-outliers

Usage

The following section walks through downloading all the necessary data (be warned -- it's a lot!) and running both the various active learning strategies on the given VQA datasets, as well as the code for generating Dataset Maps over the full dataset, and visualizing active learning acquisitions relative to those maps.

Note: This is going to require several hundred GB of disk space -- for targeted experiments, feel free to file an issue and I can point you to what you need!

Downloading Data

We have dependencies on a few datasets, some pretrained word vectors (GloVe), and a pretrained multimodal model (LXMERT), though not the one commonly released in HuggingFace Transformers. To download all dependencies, use the following commands from the root of this repository (in general, run everything from repository root!).

# Note: All the following will create/write to the directory data/ in the current repository -- feel free to change!

# GloVe Vectors
./scripts/download/glove.sh

# Download LXMERT Checkpoint (no-QA Pretraining)
./scripts/download/lxmert.sh

# Download VQA-2 Dataset (Entire Thing -- Questions, Raw Images, BottomUp Object Features)!
./scripts/download/vqa2.sh

# Download GQA Dataset (Entire Thing -- Questions, Raw Images, BottomUp Object Features)!
./scripts/download/gqa.sh

Additional Preprocessing

Many of the models we evaluate in this work use the object-based BottomUp-TopDown Attention Features -- however, our Grid Logistic Regression and LSTM-CNN Baseline both use dense ResNet-101 Features of the images. We extract these from the raw images ourselves as follows (again, this will take a ton of disk space):

# Note: GPU Recommended for Faster Extraction

# Extract VQA-2 Grid Features
python scripts/extract.py --dataset vqa2 --images data/VQA-Images --spatial data/VQA-Spatials

# Extract GQA Grid Features
python scripts/extract.py --dataset gqa --images data/GQA-Images --spatial data/GQA-Spatials

Running Active Learning

Running Active Learning is a simple matter of using the script active.py in the root of this directory. This script is able to reproduce every experiment from the paper, and allows you to specify the following:

  • Dataset in < vqa2 | gqa >
  • Split in < all | sports | food > (for VQA-2) and all for GQA
  • Model (mode) in < glreg | olreg | cnn | butd | lxmert > (Both Logistic Regression Models, LSTM-CNN, BottomUp-TopDown, and LXMERT, respectively)
  • Active Learning Strategy in < baseline | least-conf | entropy | mc-entropy | mc-bald | coreset-{fused, language, vision} > following the paper.
  • Size of Seed Set (burn, for burn-in) in < p05 | p10 | p25 | p50 > where each denotes percentage of full-dataset to use as seed set.

For example, to run the BottomUp-TopDown Attention Model (butd) with the VQA-2 Sports Dataset, with Bayesian Active Learning by Disagreement, with a seed set that's 10% the size of the original dataset, use the following:

# Note: If GPU available (recommended), pass --gpus 1 as well!
python active.py --dataset vqa2 --split sports --mode butd --burn p10 --strategy mc-bald

File an issue if you run into trouble!

Creating Dataset Maps

Creating a Dataset Map entails training a model on an entire dataset, while maintaining statistics on a per-example basis, over the course of training. To train models and dump these statistics, use the top-level file cartograph.py as follows (again, for the BottomUp-TopDown Model, on VQA2-Sports):

python cartograph.py --dataset vqa2 --split sports --mode butd

Once you've trained a model and generated the necessary statistics, you can plot the corresponding map using the top-level file chart.py as follows:

# Note: `map` mode only generates the dataset map... to generate acquisition plots, see below!
python chart.py --mode map --dataset vqa2 --split sports --model butd

Note that Dataset Maps are generated per-dataset, per-model!

Visualizing Acquisitions

To visualize the acquisitions of a given active learning strategy relative to a given dataset map (the bar graphs from our paper), you can run the following (again, with our running example, but works for any combination):

python chart.py --mode acquisitions --dataset vqa2 --split sports --model butd --burn p10 --strategies mc-bald

Note that the script chart.py defaults to plotting acquisitions for all active learning strategies -- either make sure to run these out for the configuration you want, or provide the appropriate arguments!

Ablating Outliers

Finally, to run the Outlier Ablation experiments for a given model/active learning strategy, take the following steps:

  • Identify the different "frontiers" of examples (different difficulty classes) by using scripts/frontier.py
  • Once this file has been generated, run active.py with the special flag --dataset vqa2-frontier and the arbitrary strategies you care about.
  • Sit back, examine the results, and get excited!

Concretely, you can generate the frontier files for a BottomUp-TopDown Attention Model as follows:

python scripts/frontier.py --model butd

Any other model would also work -- just make sure you've generated the map via cartograph.py first!


Results

We present the full set of results from the paper (and the additional results from the supplement) in the visualizations/ directory. The sub-directory active-learning shows performance vs. samples for various splits of strategies (visualizing all on the same plot is a bit taxing), while the sub-directory acquisitions has both the dataset maps and corresponding acquisitions per strategy!


Start-Up (from Scratch)

Use these commands if you're starting a repository from scratch (this shouldn't be necessary to use/build off of this code, but I like to keep this in the README in case things break in the future). Generally, you should be fine with the "Usage" section above!

Linux w/ GPU & CUDA 11.0

# Create Python Environment (assumes Anaconda -- replace with package manager of choice!)
conda create --name vqa-outliers python=3.8
conda activate vqa-outliers
conda install pytorch torchvision torchaudio cudatoolkit=11.0 -c pytorch
conda install ipython jupyter
conda install pytorch-lightning -c conda-forge

pip install typed-argument-parser h5py opencv-python matplotlib annoy seaborn spacy scipy transformers scikit-learn

Mac OS & Linux (CPU)

# Create Python Environment (assumes Anaconda -- replace with package manager of choice!)
conda create --name vqa-outliers python=3.8
conda activate vqa-outliers
conda install pytorch torchvision torchaudio -c pytorch
conda install ipython jupyter
conda install pytorch-lightning -c conda-forge

pip install typed-argument-parser h5py opencv-python matplotlib annoy seaborn spacy scipy transformers scikit-learn

Note

We are committed to maintaining this repository for the community. We did port this code up to latest versions of PyTorch-Lightning and PyTorch, so there may be small incompatibilities we didn't catch when testing -- please feel free to open an issue if you run into problems, and I will respond within 24 hours. If urgent, please shoot me an email at [email protected] with "VQA-Outliers Code" in the Subject line and I'll be happy to help!

Owner
Sidd Karamcheti
PhD Student at Stanford & Research Intern at Hugging Face 🤗
Sidd Karamcheti
A transformer model to predict pathogenic mutations

MutFormer MutFormer is an application of the BERT (Bidirectional Encoder Representations from Transformers) NLP (Natural Language Processing) model wi

Wang Genomics Lab 2 Nov 29, 2022
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

514 Dec 28, 2022
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar

166 Dec 31, 2022
Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch

Jiangjingwen 13 Jan 06, 2023
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

39 Dec 24, 2022
A hybrid framework (neural mass model + ML) for SC-to-FC prediction

The current workflow simulates brain functional connectivity (FC) from structural connectivity (SC) with a neural mass model. Gradient descent is applied to optimize the parameters in the neural mass

Yilin Liu 1 Jan 26, 2022
AdelaiDepth is an open source toolbox for monocular depth prediction.

AdelaiDepth is an open source toolbox for monocular depth prediction.

Adelaide Intelligent Machines (AIM) Group 743 Jan 01, 2023
[ECCV2020] Content-Consistent Matching for Domain Adaptive Semantic Segmentation

[ECCV20] Content-Consistent Matching for Domain Adaptive Semantic Segmentation This is a PyTorch implementation of CCM. News: GTA-4K list is available

Guangrui Li 88 Aug 25, 2022
An implementation of a sequence to sequence neural network using an encoder-decoder

Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a

Luke Tonin 195 Dec 17, 2022
Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Distant Supervision for Scene Graph Generation Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation. Introduction The pape

THUNLP 23 Dec 31, 2022
A faster pytorch implementation of faster r-cnn

A Faster Pytorch Implementation of Faster R-CNN Write at the beginning [05/29/2020] This repo was initaited about two years ago, developed as the firs

Jianwei Yang 7.1k Jan 01, 2023
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
Data reduction pipeline for KOALA on the AAT.

KOALA KOALA, the Kilofibre Optical AAT Lenslet Array, is a wide-field, high efficiency, integral field unit used by the AAOmega spectrograph on the 3.

4 Sep 26, 2022
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages

OCR-Streamlit-App OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages OCR app gets an image a

Siva Prakash 5 Apr 05, 2022
Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINOâ„¢ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022