Versatile Generative Language Model

Overview

Versatile Generative Language Model

License: MIT

This is the implementation of the paper:

Exploring Versatile Generative Language Model Via Parameter-Efficient Transfer Learning. Zhaojiang Lin, Andrea Madotto, Pascale Fung Findings of EMNLP 2020 [PDF]

If you use any source codes or datasets included in this toolkit in your work, please cite the following paper. The bibtex is listed below:

@article{lin2020exploring,
  title={Exploring Versatile Generative Language Model Via Parameter-Efficient Transfer Learning},
  author={Lin, Zhaojiang and Madotto, Andrea and Fung, Pascale},
  journal={arXiv preprint arXiv:2004.03829},
  year={2020}
}

Abstract

Fine-tuning pre-trained generative language models to down-stream language generation tasks have shown promising results. However, it comes with the cost of having a single, large, model for each task, which is not ideal in low-memory/power scenarios (e.g., mobile). In this work, we propose an effective way for fine-tuning multiple down-stream generation tasks simultaneously using a single, large pre-trained model. The experiments in five diverse language generation tasks show that by just using an additional 2-3% parameters for each task, our model can maintain or even improve the performance of fine-tuning the whole model.

Versatile Generative Language Model (VLM):

Versatile Language Model (VLM) is composed of three components: a pre-trained language model back-bone (e.g., GPT-2), and two kinds of specialized parameters for each generation task such as low-rank residual adapters and task embeddings.

Dependency

Check the packages needed or simply run the command

❱❱❱ pip install -r requirements.txt

Experiments

Dataset

Download the preprocessed datasets

Reproducibility

We provide the trained checkpoint of our VLM.

Test model: choose one task from (mt, summarization, dialogue, qa, nlg].

❱❱❱ python ./evaluate_vlm.py --task mt --no_sample --model_checkpoint $model_path

Fine tune GPT-2

Train machine translation:

❱❱❱ python ./train.py --gradient_accumulation_steps=4 --max_history=2 --train_batch_size=8 --valid_batch_size=8 --n_epochs 8 --task mt --dataset_path data/NMT/data_en_ge.json

Test machine translation:

❱❱❱ python ./evaluate.py --task mt --no_sample --max_history=2 --model_checkpoint runs/$model_checkpoint

Check run.sh to run other tasks

VLM train Adapters and Task embeddings

Train machine translation without knowledge distillation

❱❱❱ python ./train.py --gradient_accumulation_steps=4 --max_history=2 --train_batch_size=8 --valid_batch_size=8 --n_epochs 8 --task mt --dataset_path data/NMT/data_en_ge.json --adapter_bottleneck 300 --lr 0.0005

Train machine translation using sentence level knowledge distillation:

❱❱❱ python ./sentence_distiller.py --task mt --max_history=2 --model_checkpoint runs/$fully_finetuned_gpt2_checkpoint --no_sample
❱❱❱ python ./train.py --gradient_accumulation_steps=4 --max_history=2 --train_batch_size=8 --valid_batch_size=8 --n_epochs 8 --task mt --dataset_path data/NMT/data_en_ge.json --adapter_bottleneck 300 --lr 0.0005 --distillation

Test machine traslation:

❱❱❱ python ./evaluate.py --task mt --no_sample --adapter_bottleneck 300 --model_checkpoint runs/$model_checkpoint

Check run.sh to run other tasks

Combine all the adapters and task embedding into single model

Line 68 of combine_all.py to provide the list of checkpoint

❱❱❱ python combine_all.py

Test to see if the result is same

❱❱❱ python ./evaluate_vlm.py --task mt --no_sample --model_checkpoint $model_path

The above scripts illustrate how to train VLM continuously when tasks arrive sequentially.

Multitask training VLM

When all the tasks available at the same time.

❱❱❱ python ./train_vlm.py --gradient_accumulation_steps=16 --train_batch_size=1 --valid_batch_size=1 --n_epochs 3

Acknowledgement

This repository is implemented base on Huggingface

Owner
Zhaojiang Lin
Ph.D. Candidate - NLP - Deep Learning
Zhaojiang Lin
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

Princeton Vision & Learning Lab 115 Jan 04, 2023
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle

DOC | Quick Start | 中文 Breaking News !! 🔥 🔥 🔥 OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO

1.5k Jan 06, 2023
A dual benchmarking study of visual forgery and visual forensics techniques

A dual benchmarking study of facial forgery and facial forensics In recent years, visual forgery has reached a level of sophistication that humans can

8 Jul 06, 2022
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022
Code for Temporally Abstract Partial Models

Code for Temporally Abstract Partial Models Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetar

DeepMind 19 Jul 13, 2022
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
Everything you want about DP-Based Federated Learning, including Papers and Code. (Mechanism: Laplace or Gaussian, Dataset: femnist, shakespeare, mnist, cifar-10 and fashion-mnist. )

Differential Privacy (DP) Based Federated Learning (FL) Everything about DP-based FL you need is here. (所有你需要的DP-based FL的信息都在这里) Code Tip: the code o

wenzhu 83 Dec 24, 2022
Image Processing, Image Smoothing, Edge Detection and Transforms

opevcvdl-hw1 This project uses openCV and Qt to achieve the requirements. Version Python 3.7 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.1

Kenny Cheng 3 Aug 17, 2022
Training DiffWave using variational method from Variational Diffusion Models.

Variational DiffWave Training DiffWave using variational method from Variational Diffusion Models. Quick Start python train_distributed.py discrete_10

Chin-Yun Yu 26 Dec 13, 2022
CCP dataset from Clothing Co-Parsing by Joint Image Segmentation and Labeling

Clothing Co-Parsing (CCP) Dataset Clothing Co-Parsing (CCP) dataset is a new clothing database including elaborately annotated clothing items. 2, 098

Wei Yang 434 Dec 24, 2022
This repo contains implementation of different architectures for emotion recognition in conversations.

Emotion Recognition in Conversations Updates 🔥 🔥 🔥 Date Announcements 03/08/2021 🎆 🎆 We have released a new dataset M2H2: A Multimodal Multiparty

Deep Cognition and Language Research (DeCLaRe) Lab 1k Dec 30, 2022
Tello Drone Trajectory Tracking

With this library you can track the trajectory of your tello drone or swarm of drones in real time.

Kamran Asgarov 2 Oct 12, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
PoolFormer: MetaFormer is Actually What You Need for Vision

PoolFormer: MetaFormer is Actually What You Need for Vision (arXiv) This is a PyTorch implementation of PoolFormer proposed by our paper "MetaFormer i

Sea AI Lab 1k Dec 30, 2022
Subpopulation detection in high-dimensional single-cell data

PhenoGraph for Python3 PhenoGraph is a clustering method designed for high-dimensional single-cell data. It works by creating a graph ("network") repr

Dana Pe'er Lab 42 Sep 05, 2022
An open-source, low-cost, image-based weed detection device for fallow scenarios.

Welcome to the OpenWeedLocator (OWL) project, an opensource hardware and software green-on-brown weed detector that uses entirely off-the-shelf compon

Guy Coleman 145 Jan 05, 2023
Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Clara Meister 50 Nov 12, 2022
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022