Versatile Generative Language Model

Overview

Versatile Generative Language Model

License: MIT

This is the implementation of the paper:

Exploring Versatile Generative Language Model Via Parameter-Efficient Transfer Learning. Zhaojiang Lin, Andrea Madotto, Pascale Fung Findings of EMNLP 2020 [PDF]

If you use any source codes or datasets included in this toolkit in your work, please cite the following paper. The bibtex is listed below:

@article{lin2020exploring,
  title={Exploring Versatile Generative Language Model Via Parameter-Efficient Transfer Learning},
  author={Lin, Zhaojiang and Madotto, Andrea and Fung, Pascale},
  journal={arXiv preprint arXiv:2004.03829},
  year={2020}
}

Abstract

Fine-tuning pre-trained generative language models to down-stream language generation tasks have shown promising results. However, it comes with the cost of having a single, large, model for each task, which is not ideal in low-memory/power scenarios (e.g., mobile). In this work, we propose an effective way for fine-tuning multiple down-stream generation tasks simultaneously using a single, large pre-trained model. The experiments in five diverse language generation tasks show that by just using an additional 2-3% parameters for each task, our model can maintain or even improve the performance of fine-tuning the whole model.

Versatile Generative Language Model (VLM):

Versatile Language Model (VLM) is composed of three components: a pre-trained language model back-bone (e.g., GPT-2), and two kinds of specialized parameters for each generation task such as low-rank residual adapters and task embeddings.

Dependency

Check the packages needed or simply run the command

❱❱❱ pip install -r requirements.txt

Experiments

Dataset

Download the preprocessed datasets

Reproducibility

We provide the trained checkpoint of our VLM.

Test model: choose one task from (mt, summarization, dialogue, qa, nlg].

❱❱❱ python ./evaluate_vlm.py --task mt --no_sample --model_checkpoint $model_path

Fine tune GPT-2

Train machine translation:

❱❱❱ python ./train.py --gradient_accumulation_steps=4 --max_history=2 --train_batch_size=8 --valid_batch_size=8 --n_epochs 8 --task mt --dataset_path data/NMT/data_en_ge.json

Test machine translation:

❱❱❱ python ./evaluate.py --task mt --no_sample --max_history=2 --model_checkpoint runs/$model_checkpoint

Check run.sh to run other tasks

VLM train Adapters and Task embeddings

Train machine translation without knowledge distillation

❱❱❱ python ./train.py --gradient_accumulation_steps=4 --max_history=2 --train_batch_size=8 --valid_batch_size=8 --n_epochs 8 --task mt --dataset_path data/NMT/data_en_ge.json --adapter_bottleneck 300 --lr 0.0005

Train machine translation using sentence level knowledge distillation:

❱❱❱ python ./sentence_distiller.py --task mt --max_history=2 --model_checkpoint runs/$fully_finetuned_gpt2_checkpoint --no_sample
❱❱❱ python ./train.py --gradient_accumulation_steps=4 --max_history=2 --train_batch_size=8 --valid_batch_size=8 --n_epochs 8 --task mt --dataset_path data/NMT/data_en_ge.json --adapter_bottleneck 300 --lr 0.0005 --distillation

Test machine traslation:

❱❱❱ python ./evaluate.py --task mt --no_sample --adapter_bottleneck 300 --model_checkpoint runs/$model_checkpoint

Check run.sh to run other tasks

Combine all the adapters and task embedding into single model

Line 68 of combine_all.py to provide the list of checkpoint

❱❱❱ python combine_all.py

Test to see if the result is same

❱❱❱ python ./evaluate_vlm.py --task mt --no_sample --model_checkpoint $model_path

The above scripts illustrate how to train VLM continuously when tasks arrive sequentially.

Multitask training VLM

When all the tasks available at the same time.

❱❱❱ python ./train_vlm.py --gradient_accumulation_steps=16 --train_batch_size=1 --valid_batch_size=1 --n_epochs 3

Acknowledgement

This repository is implemented base on Huggingface

Owner
Zhaojiang Lin
Ph.D. Candidate - NLP - Deep Learning
Zhaojiang Lin
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
Understanding the Generalization Benefit of Model Invariance from a Data Perspective

Understanding the Generalization Benefit of Model Invariance from a Data Perspective This is the code for our NeurIPS2021 paper "Understanding the Gen

1 Jan 15, 2022
Low-code/No-code approach for deep learning inference on devices

EzEdgeAI A concept project that uses a low-code/no-code approach to implement deep learning inference on devices. It provides a componentized framewor

On-Device AI Co., Ltd. 7 Apr 05, 2022
AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation

AirPose AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation Check the teaser video This repository contains the code of A

Robot Perception Group 41 Dec 05, 2022
Rust bindings for the C++ api of PyTorch.

tch-rs Rust bindings for the C++ api of PyTorch. The goal of the tch crate is to provide some thin wrappers around the C++ PyTorch api (a.k.a. libtorc

Laurent Mazare 2.3k Dec 30, 2022
Object detection on multiple datasets with an automatically learned unified label space.

Simple multi-dataset detection An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of E

Xingyi Zhou 407 Dec 30, 2022
Hyperparameter Optimization for TensorFlow, Keras and PyTorch

Hyperparameter Optimization for Keras Talos • Key Features • Examples • Install • Support • Docs • Issues • License • Download Talos radically changes

Autonomio 1.6k Dec 15, 2022
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN

StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN This is the PyTorch implementation of StyleGAN of All Trades: Image Manipulati

360 Dec 28, 2022
An image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testingAn image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testing

SVM Données Une base d’images contient 490 images pour l’apprentissage (400 voitures et 90 bateaux), et encore 21 images pour fait des tests. Prétrait

Achraf Rahouti 3 Nov 30, 2021
Just Go with the Flow: Self-Supervised Scene Flow Estimation

Just Go with the Flow: Self-Supervised Scene Flow Estimation Code release for the paper Just Go with the Flow: Self-Supervised Scene Flow Estimation,

Himangi Mittal 50 Nov 22, 2022
Official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting

1 SNAS4MTF This repo is the official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 5 Sep 21, 2022
DCSL - Generalizable Crowd Counting via Diverse Context Style Learning

DCSL Generalizable Crowd Counting via Diverse Context Style Learning Requirement

3 Jun 13, 2022
A web application that provides real time temperature and humidity readings of a house.

About A web application which provides real time temperature and humidity readings of a house. If you're interested in the data collected so far click

Ben Thompson 3 Jan 28, 2022
Implement object segmentation on images using HOG algorithm proposed in CVPR 2005

HOG Algorithm Implementation Description HOG (Histograms of Oriented Gradients) Algorithm is an algorithm aiming to realize object segmentation (edge

Leo Hsieh 2 Mar 12, 2022
Efficiently computes derivatives of numpy code.

Note: Autograd is still being maintained but is no longer actively developed. The main developers (Dougal Maclaurin, David Duvenaud, Matt Johnson, and

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 6.1k Jan 08, 2023
RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.

RITA: a Study on Scaling Up Generative Protein Sequence Models RITA is a family of autoregressive protein models, developed by a collaboration of Ligh

LightOn 69 Dec 22, 2022
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data

VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De

6 Dec 15, 2022
SuRE Evaluation: A Supplementary Material

SuRE Evaluation: A Supplementary Material This repository contains supplementary material regarding the evaluations presented in the paper Visual Expl

NYU Visualization Lab 0 Dec 14, 2021