Subdivision-based Mesh Convolutional Networks

Overview

Subdivision-based Mesh Convolutional Networks

The official implementation of SubdivNet in our paper,

Subdivion-based Mesh Convolutional Networks

teaser

Requirements

  • python3.7+
  • CUDA 10.1+
  • Jittor

To install python requirements:

pip install -r requirements.txt

Fetch Data

This repo provides training scripts for classification and segementation, on the following datasets,

  • shrec11-split10
  • shrec11-split16
  • cubes
  • manifold40 (based on ModelNet40)
  • humanbody
  • coseg-aliens

To download the preprocessed data, run

sh scripts/<DATASET_NAME>/get_data.sh

Manfold40 (before remeshed) can be downloaded via this link.

Training

To train the model(s) in the paper, run this command:

sh scripts/<DATASET_NAME>/train.sh

To speed up training, you can use multiple gpus. First install OpenMPI:

sudo apt install openmpi-bin openmpi-common libopenmpi-dev

Then run the following command,

CUDA_VISIBLE_DEVICES="2,3" mpirun -np 2 sh scripts/<DATASET_NAME>/train.sh

Evaluation

To evaluate the model on a dataset, run:

sh scripts/<DATASET_NAME>/test.sh

The pretrained weights are provided. Run the following command to download them.

sh scripts/<DATASET_NAME>/get_pretrained.sh

Visualize

After testing the segmentation network, there will be colored shapes in a results directory. Use your favorite 3D viewer to check them.

Apply to your own data

To create your own data with subdivision sequence connectivity, you may use our provided tool that implements the MAPS algorithm. You may also refer to NeuralSubdivision, as they also provide a MATLAB scripts for remeshing.

To run our implemented MAPS algorithm, first install the following python dependecies,

triangle
pymeshlab
shapely
sortedcollections
networkx
rtree

Then run datagen_maps.py to remesh your meshes.

Cite

Please cite our paper if you use this code in your own work:

@misc{hu2021subdivisionbased,
      title={Subdivision-Based Mesh Convolution Networks}, 
      author={Shi-Min Hu and Zheng-Ning Liu and Meng-Hao Guo and Jun-Xiong Cai and Jiahui Huang and Tai-Jiang Mu and Ralph R. Martin},
      year={2021},
      eprint={2106.02285},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Zheng-Ning Liu
Zheng-Ning Liu
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022
A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21

ANEMONE A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21 Dependencies python==3.6.1 dgl==

Graph Analysis & Deep Learning Laboratory, GRAND 30 Dec 14, 2022
This is a five-step framework for the development of intrusion detection systems (IDS) using machine learning (ML) considering model realization, and performance evaluation.

AB-TRAP: building invisibility shields to protect network devices The AB-TRAP framework is applicable to the development of Network Intrusion Detectio

Lab-C2DC - Laboratory of Command and Control and Cyber-security 17 Jan 04, 2023
Local Attention - Flax module for Jax

Local Attention - Flax Autoregressive Local Attention - Flax module for Jax Install $ pip install local-attention-flax Usage from jax import random fr

Phil Wang 16 Jun 16, 2022
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Karush Suri 8 Nov 07, 2022
Alignment Attention Fusion framework for Few-Shot Object Detection

AAF framework Framework generalities This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is

Pierre Le Jeune 20 Dec 16, 2022
The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`

Dice Loss for NLP Tasks This repository contains code for Dice Loss for Data-imbalanced NLP Tasks at ACL2020. Setup Install Package Dependencies The c

223 Dec 17, 2022
Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes

Naive-Bayes Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes Downloading Data Set Use our Breast Cancer Wisconsin Data Set Also you can

Faeze Habibi 0 Apr 06, 2022
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano

yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X

12 Dec 05, 2022
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

NVIDIA Corporation 529 Jan 03, 2023
8-week curriculum for AI Builders

curriculum 8-week curriculum for AI Builders สารบัญ บทที่ 1 - Machine Learning คืออะไร บทที่ 2 - ชุดข้อมูลมหัศจรรย์และถิ่นที่อยู่ บทที่ 3 - Stochastic

AI Builders 134 Jan 03, 2023
Count GitHub Stars ⭐

Count GitHub Stars per Day ⭐ Track GitHub stars per day over a date range to measure the open-source popularity of different repositories. Requirement

Ultralytics 20 Nov 20, 2022
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022
Neural Architecture Search Powered by Swarm Intelligence 🐜

Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle

288 Oct 28, 2022
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
End-To-End Crowdsourcing

End-To-End Crowdsourcing Comparison of traditional crowdsourcing approaches to a state-of-the-art end-to-end crowdsourcing approach LTNet on sentiment

Andreas Koch 1 Mar 06, 2022
Image marine sea litter prediction Shiny

MARLITE Shiny app for floating marine litter detection in aerial images. This directory contains the instructions and software needed to install the S

19 Dec 22, 2022
Code for Neurips2021 Paper "Topology-Imbalance Learning for Semi-Supervised Node Classification".

Topology-Imbalance Learning for Semi-Supervised Node Classification Introduction Code for NeurIPS 2021 paper "Topology-Imbalance Learning for Semi-Sup

Victor Chen 40 Nov 23, 2022
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

CapsGNN ⠀⠀ A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019). Abstract The high-quality node embeddings learned from the Graph Neur

Benedek Rozemberczki 1.2k Jan 02, 2023