Code release for "BoxeR: Box-Attention for 2D and 3D Transformers"

Overview

BoxeR

By Duy-Kien Nguyen, Jihong Ju, Olaf Booij, Martin R. Oswald, Cees Snoek.

This repository is an official implementation of the paper BoxeR: Box-Attention for 2D and 3D Transformers.

Introduction

TL; DR. BoxeR is a Transformer-based network for end-to-end 2D object detection and instance segmentation, along with 3D object detection. The core of the network is Box-Attention which predicts regions of interest to attend by learning the transformation (translation, scaling, and rotation) from reference windows, yielding competitive performance on several vision tasks.

BoxeR

BoxeR

Abstract. In this paper, we propose a simple attention mechanism, we call box-attention. It enables spatial interaction between grid features, as sampled from boxes of interest, and improves the learning capability of transformers for several vision tasks. Specifically, we present BoxeR, short for Box Transformer, which attends to a set of boxes by predicting their transformation from a reference window on an input feature map. The BoxeR computes attention weights on these boxes by considering its grid structure. Notably, BoxeR-2D naturally reasons about box information within its attention module, making it suitable for end-to-end instance detection and segmentation tasks. By learning invariance to rotation in the box-attention module, BoxeR-3D is capable of generating discriminative information from a bird's-eye view plane for 3D end-to-end object detection. Our experiments demonstrate that the proposed BoxeR-2D achieves state-of-the-art results on COCO detection and instance segmentation. Besides, BoxeR-3D improves over the end-to-end 3D object detection baseline and already obtains a compelling performance for the vehicle category of Waymo Open, without any class-specific optimization.

License

This project is released under the MIT License.

Citing BoxeR

If you find BoxeR useful in your research, please consider citing:

@article{nguyen2021boxer,
  title={BoxeR: Box-Attention for 2D and 3D Transformers},
  author={Duy{-}Kien Nguyen and Jihong Ju and Olaf Booij and Martin R. Oswald and Cees G. M. Snoek},
  journal={arXiv preprint arXiv:2111.13087},
  year={2021}
}

Main Results

COCO Instance Segmentation Baselines with BoxeR-2D

Name param
(M)
infer
time
(fps)
box
AP
box
AP-S
box
AP-M
box
AP-L
segm
AP
segm
AP-S
segm
AP-M
segm
AP-L
BoxeR-R50-3x 40.1 12.5 50.3 33.4 53.3 64.4 42.9 22.8 46.1 61.7
BoxeR-R101-3x 59.0 10.0 50.7 33.4 53.8 65.7 43.3 23.5 46.4 62.5
BoxeR-R101-5x 59.0 10.0 51.9 34.2 55.8 67.1 44.3 24.7 48.0 63.8

Installation

Requirements

  • Linux, CUDA>=11, GCC>=5.4

  • Python>=3.8

    We recommend you to use Anaconda to create a conda environment:

    conda create -n boxer python=3.8

    Then, activate the environment:

    conda activate boxer
  • PyTorch>=1.10.1, torchvision>=0.11.2 (following instructions here)

    For example, you could install pytorch and torchvision as following:

    conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
  • Other requirements & Compilation

    python -m pip install -e BoxeR

    You can test the CUDA operators (box and instance attention) by running

    python tests/box_attn_test.py
    python tests/instance_attn_test.py

Usage

Dataset preparation

The datasets are assumed to exist in a directory specified by the environment variable $E2E_DATASETS. If the environment variable is not specified, it will be set to be .data. Under this directory, detectron2 will look for datasets in the structure described below.

$E2E_DATASETS/
├── coco/
└── waymo/

For COCO Detection and Instance Segmentation, please download COCO 2017 dataset and organize them as following:

$E2E_DATASETS/
└── coco/
	├── annotation/
		├── instances_train2017.json
		├── instances_val2017.json
		└── image_info_test-dev2017.json
	├── image/
		├── train2017/
		├── val2017/
		└── test2017/
	└── vocabs/
		└── coco_categories.txt - the mapping from coco categories to indices.

The coco_categories.txt can be downloaded here.

For Waymo Detection, please download Waymo Open dataset and organize them as following:

$E2E_DATASETS/
└── waymo/
	├── infos/
		├── dbinfos_train_1sweeps_withvelo.pkl
		├── infos_train_01sweeps_filter_zero_gt.pkl
		└── infos_val_01sweeps_filter_zero_gt.pkl
	└── lidars/
		├── gt_database_1sweeps_withvelo/
			├── CYCLIST/
			├── VEHICLE/
			└── PEDESTRIAN/
		├── train/
			├── annos/
			└── lidars/
		└── val/
			├── annos/
			└── lidars/

You can generate data files for our training and evaluation from raw data by running create_gt_database.py and create_imdb in tools/preprocess.

Training

Our script is able to automatically detect the number of available gpus on a single node. It works best with Slurm system when it can auto-detect the number of available gpus along with nodes. The command for training BoxeR is simple as following:

python tools/run.py --config ${CONFIG_PATH} --model ${MODEL_TYPE} --task ${TASK_TYPE}

For example,

  • COCO Detection
python tools/run.py --config e2edet/config/COCO-Detection/boxer2d_R_50_3x.yaml --model boxer2d --task detection
  • COCO Instance Segmentation
python tools/run.py --config e2edet/config/COCO-InstanceSegmentation/boxer2d_R_50_3x.yaml --model boxer2d --task detection
  • Waymo Detection,
python tools/run.py --config e2edet/config/Waymo-Detection/boxer3d_pointpillar.yaml --model boxer3d --task detection3d

Some tips to speed-up training

  • If your file system is slow to read images but your memory is huge, you may consider enabling 'cache_mode' option to load whole dataset into memory at the beginning of training:
python tools/run.py --config ${CONFIG_PATH} --model ${MODEL_TYPE} --task ${TASK_TYPE} dataset_config.${TASK_TYPE}.cache_mode=True
  • If your GPU memory does not fit the batch size, you may consider to use 'iter_per_update' to perform gradient accumulation:
python tools/run.py --config ${CONFIG_PATH} --model ${MODEL_TYPE} --task ${TASK_TYPE} training.iter_per_update=2
  • Our code also supports mixed precision training. It is recommended to use when you GPUs architecture can perform fast FP16 operations:
python tools/run.py --config ${CONFIG_PATH} --model ${MODEL_TYPE} --task ${TASK_TYPE} training.use_fp16=(float16 or bfloat16)

Evaluation

You can get the config file and pretrained model of BoxeR, then run following command to evaluate it on COCO 2017 validation/test set:

python tools/run.py --config ${CONFIG_PATH} --model ${MODEL_TYPE} --task ${TASK_TYPE} training.run_type=(val or test or val_test)

For Waymo evaluation, you need to additionally run the script e2edet/evaluate/waymo_eval.py from the root folder to get the final result.

Analysis and Visualization

You can get the statistics of BoxeR (fps, flops, # parameters) by running tools/analyze.py from the root folder.

python tools/analyze.py --config-path save/COCO-InstanceSegmentation/boxer2d_R_101_3x.yaml --model-path save/COCO-InstanceSegmentation/boxer2d_final.pth --tasks speed flop parameter

The notebook for BoxeR-2D visualization is provided in tools/visualization/BoxeR_2d_segmentation.ipynb.

Owner
Nguyen Duy Kien
Learn things deeply
Nguyen Duy Kien
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data

This repository is the official PyTorch implementation of Meta-Balance. Find the paper on arxiv MetaBalance: High-Performance Neural Networks for Clas

Arpit Bansal 20 Oct 18, 2021
A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning

Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

Mathieu Godbout 1 Nov 19, 2021
Applying curriculum to meta-learning for few shot classification

Curriculum Meta-Learning for Few-shot Classification We propose an adaptation of the curriculum training framework, applicable to state-of-the-art met

Stergiadis Manos 3 Oct 25, 2022
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
Predictive Modeling on Electronic Health Records(EHR) using Pytorch

Predictive Modeling on Electronic Health Records(EHR) using Pytorch Overview Although there are plenty of repos on vision and NLP models, there are ve

81 Jan 01, 2023
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
Pyramid Scene Parsing Network, CVPR2017.

Pyramid Scene Parsing Network by Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia, details are in project page. Introduction This

Hengshuang Zhao 1.5k Jan 05, 2023
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022
Model Agnostic Interpretability for Multiple Instance Learning

MIL Model Agnostic Interpretability This repo contains the code for "Model Agnostic Interpretability for Multiple Instance Learning". Overview Executa

Joe Early 10 Dec 17, 2022
Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition

Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition | paper | dataset | pretrained detection model | Authors: Yi-Chang Che

Yi-Chang Chen 1 Aug 23, 2022
A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

Emma 1 Jan 18, 2022
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023
This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models This repository contains the code for our paper VDA (publ

RUCAIBox 13 Aug 06, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
Speed-Test - You can check your intenet speed using this tool

Speed-Test Tool By Hez_X AVAILABLE ON : Termux & Kali linux & Ubuntu (Linux E

Hez-X 3 Feb 17, 2022
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022