Code release for "BoxeR: Box-Attention for 2D and 3D Transformers"

Overview

BoxeR

By Duy-Kien Nguyen, Jihong Ju, Olaf Booij, Martin R. Oswald, Cees Snoek.

This repository is an official implementation of the paper BoxeR: Box-Attention for 2D and 3D Transformers.

Introduction

TL; DR. BoxeR is a Transformer-based network for end-to-end 2D object detection and instance segmentation, along with 3D object detection. The core of the network is Box-Attention which predicts regions of interest to attend by learning the transformation (translation, scaling, and rotation) from reference windows, yielding competitive performance on several vision tasks.

BoxeR

BoxeR

Abstract. In this paper, we propose a simple attention mechanism, we call box-attention. It enables spatial interaction between grid features, as sampled from boxes of interest, and improves the learning capability of transformers for several vision tasks. Specifically, we present BoxeR, short for Box Transformer, which attends to a set of boxes by predicting their transformation from a reference window on an input feature map. The BoxeR computes attention weights on these boxes by considering its grid structure. Notably, BoxeR-2D naturally reasons about box information within its attention module, making it suitable for end-to-end instance detection and segmentation tasks. By learning invariance to rotation in the box-attention module, BoxeR-3D is capable of generating discriminative information from a bird's-eye view plane for 3D end-to-end object detection. Our experiments demonstrate that the proposed BoxeR-2D achieves state-of-the-art results on COCO detection and instance segmentation. Besides, BoxeR-3D improves over the end-to-end 3D object detection baseline and already obtains a compelling performance for the vehicle category of Waymo Open, without any class-specific optimization.

License

This project is released under the MIT License.

Citing BoxeR

If you find BoxeR useful in your research, please consider citing:

@article{nguyen2021boxer,
  title={BoxeR: Box-Attention for 2D and 3D Transformers},
  author={Duy{-}Kien Nguyen and Jihong Ju and Olaf Booij and Martin R. Oswald and Cees G. M. Snoek},
  journal={arXiv preprint arXiv:2111.13087},
  year={2021}
}

Main Results

COCO Instance Segmentation Baselines with BoxeR-2D

Name param
(M)
infer
time
(fps)
box
AP
box
AP-S
box
AP-M
box
AP-L
segm
AP
segm
AP-S
segm
AP-M
segm
AP-L
BoxeR-R50-3x 40.1 12.5 50.3 33.4 53.3 64.4 42.9 22.8 46.1 61.7
BoxeR-R101-3x 59.0 10.0 50.7 33.4 53.8 65.7 43.3 23.5 46.4 62.5
BoxeR-R101-5x 59.0 10.0 51.9 34.2 55.8 67.1 44.3 24.7 48.0 63.8

Installation

Requirements

  • Linux, CUDA>=11, GCC>=5.4

  • Python>=3.8

    We recommend you to use Anaconda to create a conda environment:

    conda create -n boxer python=3.8

    Then, activate the environment:

    conda activate boxer
  • PyTorch>=1.10.1, torchvision>=0.11.2 (following instructions here)

    For example, you could install pytorch and torchvision as following:

    conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
  • Other requirements & Compilation

    python -m pip install -e BoxeR

    You can test the CUDA operators (box and instance attention) by running

    python tests/box_attn_test.py
    python tests/instance_attn_test.py

Usage

Dataset preparation

The datasets are assumed to exist in a directory specified by the environment variable $E2E_DATASETS. If the environment variable is not specified, it will be set to be .data. Under this directory, detectron2 will look for datasets in the structure described below.

$E2E_DATASETS/
├── coco/
└── waymo/

For COCO Detection and Instance Segmentation, please download COCO 2017 dataset and organize them as following:

$E2E_DATASETS/
└── coco/
	├── annotation/
		├── instances_train2017.json
		├── instances_val2017.json
		└── image_info_test-dev2017.json
	├── image/
		├── train2017/
		├── val2017/
		└── test2017/
	└── vocabs/
		└── coco_categories.txt - the mapping from coco categories to indices.

The coco_categories.txt can be downloaded here.

For Waymo Detection, please download Waymo Open dataset and organize them as following:

$E2E_DATASETS/
└── waymo/
	├── infos/
		├── dbinfos_train_1sweeps_withvelo.pkl
		├── infos_train_01sweeps_filter_zero_gt.pkl
		└── infos_val_01sweeps_filter_zero_gt.pkl
	└── lidars/
		├── gt_database_1sweeps_withvelo/
			├── CYCLIST/
			├── VEHICLE/
			└── PEDESTRIAN/
		├── train/
			├── annos/
			└── lidars/
		└── val/
			├── annos/
			└── lidars/

You can generate data files for our training and evaluation from raw data by running create_gt_database.py and create_imdb in tools/preprocess.

Training

Our script is able to automatically detect the number of available gpus on a single node. It works best with Slurm system when it can auto-detect the number of available gpus along with nodes. The command for training BoxeR is simple as following:

python tools/run.py --config ${CONFIG_PATH} --model ${MODEL_TYPE} --task ${TASK_TYPE}

For example,

  • COCO Detection
python tools/run.py --config e2edet/config/COCO-Detection/boxer2d_R_50_3x.yaml --model boxer2d --task detection
  • COCO Instance Segmentation
python tools/run.py --config e2edet/config/COCO-InstanceSegmentation/boxer2d_R_50_3x.yaml --model boxer2d --task detection
  • Waymo Detection,
python tools/run.py --config e2edet/config/Waymo-Detection/boxer3d_pointpillar.yaml --model boxer3d --task detection3d

Some tips to speed-up training

  • If your file system is slow to read images but your memory is huge, you may consider enabling 'cache_mode' option to load whole dataset into memory at the beginning of training:
python tools/run.py --config ${CONFIG_PATH} --model ${MODEL_TYPE} --task ${TASK_TYPE} dataset_config.${TASK_TYPE}.cache_mode=True
  • If your GPU memory does not fit the batch size, you may consider to use 'iter_per_update' to perform gradient accumulation:
python tools/run.py --config ${CONFIG_PATH} --model ${MODEL_TYPE} --task ${TASK_TYPE} training.iter_per_update=2
  • Our code also supports mixed precision training. It is recommended to use when you GPUs architecture can perform fast FP16 operations:
python tools/run.py --config ${CONFIG_PATH} --model ${MODEL_TYPE} --task ${TASK_TYPE} training.use_fp16=(float16 or bfloat16)

Evaluation

You can get the config file and pretrained model of BoxeR, then run following command to evaluate it on COCO 2017 validation/test set:

python tools/run.py --config ${CONFIG_PATH} --model ${MODEL_TYPE} --task ${TASK_TYPE} training.run_type=(val or test or val_test)

For Waymo evaluation, you need to additionally run the script e2edet/evaluate/waymo_eval.py from the root folder to get the final result.

Analysis and Visualization

You can get the statistics of BoxeR (fps, flops, # parameters) by running tools/analyze.py from the root folder.

python tools/analyze.py --config-path save/COCO-InstanceSegmentation/boxer2d_R_101_3x.yaml --model-path save/COCO-InstanceSegmentation/boxer2d_final.pth --tasks speed flop parameter

The notebook for BoxeR-2D visualization is provided in tools/visualization/BoxeR_2d_segmentation.ipynb.

Owner
Nguyen Duy Kien
Learn things deeply
Nguyen Duy Kien
The repo of Feedback Networks, CVPR17

Feedback Networks http://feedbacknet.stanford.edu/ Paper: Feedback Networks, CVPR 2017. Amir R. Zamir*,Te-Lin Wu*, Lin Sun, William B. Shen, Bertram E

Stanford Vision and Learning Lab 87 Nov 19, 2022
A note taker for NVDA. Allows the user to create, edit, view, manage and export notes to different formats.

Quick Notetaker add-on for NVDA The Quick Notetaker add-on is a wonderful tool which allows writing notes quickly and easily anytime and from any app

5 Dec 06, 2022
Mercury: easily convert Python notebook to web app and share with others

Mercury Share your Python notebooks with others Easily convert your Python notebooks into interactive web apps by adding parameters in YAML. Simply ad

MLJAR 2.2k Dec 27, 2022
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Gopalika Sharma 1 Nov 08, 2021
Source code for the BMVC-2021 paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".

SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation Source code for the paper "SimReg: Regression as a Simple Yet E

9 Oct 15, 2022
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
The Noise Contrastive Estimation for softmax output written in Pytorch

An NCE implementation in pytorch About NCE Noise Contrastive Estimation (NCE) is an approximation method that is used to work around the huge computat

Kaiyu Shi 287 Nov 25, 2022
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
This is the formal code implementation of the CVPR 2022 paper 'Federated Class Incremental Learning'.

Official Pytorch Implementation for GLFC [CVPR-2022] Federated Class-Incremental Learning This is the official implementation code of our paper "Feder

Race Wang 57 Dec 27, 2022
Implement Decoupled Neural Interfaces using Synthetic Gradients in Pytorch

disclaimer: this code is modified from pytorch-tutorial Image classification with synthetic gradient in Pytorch I implement the Decoupled Neural Inter

Andrew 114 Dec 22, 2022
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
Fuwa-http - The http client implementation for the fuwa eco-system

Fuwa HTTP The HTTP client implementation for the fuwa eco-system Example import

Fuwa 2 Feb 16, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
A simple AI that will give you si ple task and this is made with python

Crystal-AI A simple AI that will give you si ple task and this is made with python Prerequsites: Python3.6.2 pyttsx3 pip install pyttsx3 pyaudio pip i

CrystalAnd 1 Dec 25, 2021
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search This is the offical implementation of the

SNU ADSL 0 Feb 07, 2022
fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022