A 3D sparse LBM solver implemented using Taichi

Overview

taichi_LBM3D

Background

Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure implemented using Taichi programming language, which is designed for porous medium flow simulation. Taking advantage of Taichi's computing structure, Taichi_LBM3D can be employed on shared-memory multi-core CPUs or massively parallel GPUs (OpenGL and CUDA). The code is around 400 lines, extensible and intuitive to understand.

Installation

This solver is developed using Taichi programming language (a python embedded programming language), install Taichi is required, by python3 -m pip install taichi.

Pyevtk is required for export simualtion result for visualization in Paraview, install Pyevtk by pip install pyevtk

Usage

There are several place for users to modify to fit their problems:

set computing backend

First the computing backend should be specified by ti.init(arch=ti.cpu) using parallel CPU backend, or by ti.init(arch=ti.gpu) to use OpenGL or CUDA(is available) as computing backend

set input geometry

LBM uses uniform mesh, the geometry is import as a ASCII file with 0 and 1, where 0 represent fluid point and 1 represent solid point. They are stored in format:

for k in range(nz)
  for j in range(ny)
    for i in range(nx)
      geometry[i,j,k]

You can specify the input file at: solid_np = init_geo('./img_ftb131.txt')

For two phase solver, a two phase distribution input file is also requred. This file is composed of -1 and 1 representing phase 1 and 2 respectively

set geometry size

Set geometry input file size here: nx,ny,nz = 131,131,131

set external force

Set expernal force applied on the fluid here: fx,fy,fz = 0.0e-6,0.0,0.0

set boundary conditions

There are three boundary conditions used in this code: Periodic boundary condition, fix pressure boundary condition, and fix velocity boundary condition We use the left side of X direction as an example: bc_x_left, rho_bcxl, vx_bcxl, vy_bcxl, vz_bcxl = 1, 1.0, 0.0e-5, 0.0, 0.0 set boundary condition type in bc_x_left; 0=periodic boundary condition, 1 = fix pressure boundary condition, 2 = fix velocity boundary condition if bc_x_left == 1 is select, then the desired pressure on the left side of X direction need to be given in rho_bcxl if bc_x_left == 2 is select, then the desired velocity on the left side of X direction need to be given in vx_bcxl, vy_bcxl, vz_bcxl

The same rules applied to the other five sides

set viscosity

Viscosity is set in niu = 0.1 for single phase solver

niu_l = 0.05
niu_g = 0.2

for two phase solver, niu_l for liquid phase, niu_g for phase 2

Additional parameters for two phase solver
  • Contact angle of the solid surface can be specified in psi_solid = 0.7 this value is the cosine of the desired contact angle, so the value is between -1 and 1
  • Interfical tension of two phases is set in CapA = 0.005
  • Boundary condition for the phase setting: bc_psi_x_left, psi_x_left = 1, -1.0 bc_psi_x_left = 0 for periodic boundary for the phase field, 1 = constant phase field value boundary. If bc_psi_x_left is set as 1, then the next parameter is desired constant phase for this boundary: psi_x_left should be set as -1.0 or 1.0 for phase 1 or phase 2 respectively.

All the quantities are in lattice units

Examples (Direct Numerical Simulation)

Flow over a vehicle: inertia dominated

image image

Single phase flow in a sandstone (Sandstone geometry is build from Micro-CT images at 7.5 microns): viscous dominated

image

Urban air flow: inertia dominated

image

Two Phase flow: oil (non-wetting phase) into a ketton carbonate rock saturated with water (wetting phase): capillary dominated

Alt text

Authors

Jianhui Yang @yjhp1016 Liang Yang @ly16302

License

MIT

Owner
Jianhui Yang
Researcher in CFD, porous medium flow and data science
Jianhui Yang
code for paper -- "Seamless Satellite-image Synthesis"

Seamless Satellite-image Synthesis by Jialin Zhu and Tom Kelly. Project site. The code of our models borrows heavily from the BicycleGAN repository an

Light 14 Apr 05, 2022
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
Hyperbolic Procrustes Analysis Using Riemannian Geometry

Hyperbolic Procrustes Analysis Using Riemannian Geometry The code in this repository creates the figures presented in this article: Please notice that

Ronen Talmon's Lab 2 Jan 08, 2023
Tool for working with Y-chromosome data from YFull and FTDNA

ycomp ycomp is a tool for working with Y-chromosome data from YFull and FTDNA. Run ycomp -h for information on how to use the program. Installation Th

Alexander Regueiro 2 Jun 18, 2022
Repo for our ICML21 paper Unsupervised Learning of Visual 3D Keypoints for Control

Unsupervised Learning of Visual 3D Keypoints for Control [Project Website] [Paper] Boyuan Chen1, Pieter Abbeel1, Deepak Pathak2 1UC Berkeley 2Carnegie

Boyuan Chen 34 Jul 22, 2022
Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Det

123 Jan 04, 2023
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
SiT: Self-supervised vIsion Transformer

This repository contains the official PyTorch self-supervised pretraining, finetuning, and evaluation codes for SiT (Self-supervised image Transformer).

Sara Ahmed 275 Dec 28, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

Wenhao Wang 89 Jan 02, 2023
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Video Matting Refinement For Python

Video-matting refinement Library (use pip to install) scikit-image numpy av matplotlib Run Static background python path_to_video.mp4 Moving backgroun

3 Jan 11, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion". Paper link: https://arxiv.org/abs/2111.10

Ziyao Zeng 14 Feb 26, 2022
MGFN: Multi-Graph Fusion Networks for Urban Region Embedding was accepted by IJCAI-2022.

Multi-Graph Fusion Networks for Urban Region Embedding (IJCAI-22) This is the implementation of Multi-Graph Fusion Networks for Urban Region Embedding

202 Nov 18, 2022
TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

FunMatch-Distillation TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A g

Sayak Paul 67 Dec 20, 2022
ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

Zongdai 107 Dec 20, 2022
Towards Interpretable Deep Metric Learning with Structural Matching

DIML Created by Wenliang Zhao*, Yongming Rao*, Ziyi Wang, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for paper Towards Interpr

Wenliang Zhao 75 Nov 11, 2022
Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency This is a official implementation of the CycleContrast introduced in

13 Nov 14, 2022
Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch

Jiangjingwen 13 Jan 06, 2023
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations" this repository is maintained by bo

Yuhan Liu 24 Nov 29, 2022