A 3D sparse LBM solver implemented using Taichi

Overview

taichi_LBM3D

Background

Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure implemented using Taichi programming language, which is designed for porous medium flow simulation. Taking advantage of Taichi's computing structure, Taichi_LBM3D can be employed on shared-memory multi-core CPUs or massively parallel GPUs (OpenGL and CUDA). The code is around 400 lines, extensible and intuitive to understand.

Installation

This solver is developed using Taichi programming language (a python embedded programming language), install Taichi is required, by python3 -m pip install taichi.

Pyevtk is required for export simualtion result for visualization in Paraview, install Pyevtk by pip install pyevtk

Usage

There are several place for users to modify to fit their problems:

set computing backend

First the computing backend should be specified by ti.init(arch=ti.cpu) using parallel CPU backend, or by ti.init(arch=ti.gpu) to use OpenGL or CUDA(is available) as computing backend

set input geometry

LBM uses uniform mesh, the geometry is import as a ASCII file with 0 and 1, where 0 represent fluid point and 1 represent solid point. They are stored in format:

for k in range(nz)
  for j in range(ny)
    for i in range(nx)
      geometry[i,j,k]

You can specify the input file at: solid_np = init_geo('./img_ftb131.txt')

For two phase solver, a two phase distribution input file is also requred. This file is composed of -1 and 1 representing phase 1 and 2 respectively

set geometry size

Set geometry input file size here: nx,ny,nz = 131,131,131

set external force

Set expernal force applied on the fluid here: fx,fy,fz = 0.0e-6,0.0,0.0

set boundary conditions

There are three boundary conditions used in this code: Periodic boundary condition, fix pressure boundary condition, and fix velocity boundary condition We use the left side of X direction as an example: bc_x_left, rho_bcxl, vx_bcxl, vy_bcxl, vz_bcxl = 1, 1.0, 0.0e-5, 0.0, 0.0 set boundary condition type in bc_x_left; 0=periodic boundary condition, 1 = fix pressure boundary condition, 2 = fix velocity boundary condition if bc_x_left == 1 is select, then the desired pressure on the left side of X direction need to be given in rho_bcxl if bc_x_left == 2 is select, then the desired velocity on the left side of X direction need to be given in vx_bcxl, vy_bcxl, vz_bcxl

The same rules applied to the other five sides

set viscosity

Viscosity is set in niu = 0.1 for single phase solver

niu_l = 0.05
niu_g = 0.2

for two phase solver, niu_l for liquid phase, niu_g for phase 2

Additional parameters for two phase solver
  • Contact angle of the solid surface can be specified in psi_solid = 0.7 this value is the cosine of the desired contact angle, so the value is between -1 and 1
  • Interfical tension of two phases is set in CapA = 0.005
  • Boundary condition for the phase setting: bc_psi_x_left, psi_x_left = 1, -1.0 bc_psi_x_left = 0 for periodic boundary for the phase field, 1 = constant phase field value boundary. If bc_psi_x_left is set as 1, then the next parameter is desired constant phase for this boundary: psi_x_left should be set as -1.0 or 1.0 for phase 1 or phase 2 respectively.

All the quantities are in lattice units

Examples (Direct Numerical Simulation)

Flow over a vehicle: inertia dominated

image image

Single phase flow in a sandstone (Sandstone geometry is build from Micro-CT images at 7.5 microns): viscous dominated

image

Urban air flow: inertia dominated

image

Two Phase flow: oil (non-wetting phase) into a ketton carbonate rock saturated with water (wetting phase): capillary dominated

Alt text

Authors

Jianhui Yang @yjhp1016 Liang Yang @ly16302

License

MIT

Owner
Jianhui Yang
Researcher in CFD, porous medium flow and data science
Jianhui Yang
ICLR2021 (Under Review)

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning This repository contains the official PyTorch implementation o

Haoyi Fan 58 Dec 30, 2022
Flexible time series feature extraction & processing

tsflex is a toolkit for flexible time series processing & feature extraction, that is efficient and makes few assumptions about sequence data. Useful

PreDiCT.IDLab 206 Dec 28, 2022
An offline deep reinforcement learning library

d3rlpy: An offline deep reinforcement learning library d3rlpy is an offline deep reinforcement learning library for practitioners and researchers. imp

Takuma Seno 817 Jan 02, 2023
This is the official pytorch implementation of the BoxEL for the description logic EL++

BoxEL: Box EL++ Embedding This is the official pytorch implementation of the BoxEL for the description logic EL++. BoxEL++ is a geometric approach bas

1 Nov 03, 2022
Feature extraction made simple with torchextractor

torchextractor: PyTorch Intermediate Feature Extraction Introduction Too many times some model definitions get remorselessly copy-pasted just because

Antoine Broyelle 89 Oct 31, 2022
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Junbin Xiao 50 Nov 24, 2022
Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Zhun Zhong 56 Dec 09, 2022
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

1 May 31, 2022
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023
The dynamics of representation learning in shallow, non-linear autoencoders

The dynamics of representation learning in shallow, non-linear autoencoders The package is written in python and uses the pytorch implementation to ML

Maria Refinetti 4 Jun 08, 2022
The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"

GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net

Guoji Fu 18 Nov 14, 2022
An open-source Kazakh named entity recognition dataset (KazNERD), annotation guidelines, and baseline NER models.

Kazakh Named Entity Recognition This repository contains an open-source Kazakh named entity recognition dataset (KazNERD), named entity annotation gui

ISSAI 9 Dec 23, 2022
Clean and readable code for Decision Transformer: Reinforcement Learning via Sequence Modeling

Minimal implementation of Decision Transformer: Reinforcement Learning via Sequence Modeling in PyTorch for mujoco control tasks in OpenAI gym

Nikhil Barhate 104 Jan 06, 2023
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

8 May 25, 2022
This is the code used in the paper "Entity Embeddings of Categorical Variables".

This is the code used in the paper "Entity Embeddings of Categorical Variables". If you want to get the original version of the code used for the Kagg

Cheng Guo 845 Nov 29, 2022
for taichi voxel-challange event

Taichi Voxel Challenge Figure: result of python3 example6.py. Please replace the image above (demo.jpg) with yours, so that other people can immediate

Liming Xu 20 Nov 26, 2022
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

Junha Lee 10 Dec 02, 2022
Does Pretraining for Summarization Reuqire Knowledge Transfer?

Pretraining summarization models using a corpus of nonsense

Approximately Correct Machine Intelligence (ACMI) Lab 12 Dec 19, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022