SiT: Self-supervised vIsion Transformer

Related tags

Deep LearningSiT
Overview

SiT: Self-supervised vIsion Transformer

This repository contains the official PyTorch self-supervised pretraining, finetuning, and evaluation codes for SiT (Self-supervised image Transformer).

The training strategy is adopted from Deit

Usage

  • Create an environment

conda create -n SiT python=3.8

  • Activate the environment and install the necessary packages

conda activate SiT

conda install pytorch torchvision torchaudio cudatoolkit=11.0 -c pytorch

pip install -r requirements.txt

Self-supervised pre-training

python -m torch.distributed.launch --nproc_per_node=4 --use_env main.py --batch-size 72 --epochs 501 --min-lr 5e-6 --lr 1e-3 --training-mode 'SSL' --data-set 'STL10' --output 'checkpoints/SSL/STL10' --validate-every 10

Finetuning

python -m torch.distributed.launch --nproc_per_node=4 --use_env main.py --batch-size 120 --epochs 501 --min-lr 5e-6 --training-mode 'finetune' --data-set 'STL10' --finetune 'checkpoints/SSL/STL10/checkpoint.pth' --output 'checkpoints/finetune/STL10' --validate-every 10

Linear Evaluation

Linear projection Head

python -m torch.distributed.launch --nproc_per_node=4 --use_env main.py --batch-size 120 --epochs 501 --lr 1e-3 --weight-decay 5e-4 --min-lr 5e-6 --training-mode 'finetune' --data-set 'STL10' --finetune 'checkpoints/SSL/STL10/checkpoint.pth' --output 'checkpoints/finetune/STL10_LE' --validate-every 10 --SiT_LinearEvaluation 1

2-layer MLP projection Head

python -m torch.distributed.launch --nproc_per_node=4 --use_env main.py --batch-size 120 --epochs 501 --lr 1e-3 --weight-decay 5e-4 --min-lr 5e-6 --training-mode 'finetune' --data-set 'STL10' --finetune 'checkpoints/SSL/STL10/checkpoint.pth' --output 'checkpoints/finetune/STL10_LE_hidden' --validate-every 10 --SiT_LinearEvaluation 1 --representation-size 1024

Note: assign the --dataset_location parameter to the location of the downloaded dataset

If you use this code for a paper, please cite:

@article{atito2021sit,

  title={SiT: Self-supervised vIsion Transformer},

  author={Atito, Sara and Awais, Muhammad and Kittler, Josef},

  journal={arXiv preprint arXiv:2104.03602},

  year={2021}

}

License

This repository is released under the GNU General Public License.

Owner
Sara Ahmed
Sara Ahmed
Physical Anomalous Trajectory or Motion (PHANTOM) Dataset

Physical Anomalous Trajectory or Motion (PHANTOM) Dataset Description This dataset contains the six different classes as described in our paper[]. The

0 Dec 16, 2021
Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Pano3D A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation Pano3D is a new benchmark for depth estimation from spherical panoramas. We

Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas 50 Dec 29, 2022
Cancer metastasis detection with neural conditional random field (NCRF)

NCRF Prerequisites Data Whole slide images Annotations Patch images Model Training Testing Tissue mask Probability map Tumor localization FROC evaluat

Baidu Research 731 Jan 01, 2023
FluxTraining.jl gives you an endlessly extensible training loop for deep learning

A flexible neural net training library inspired by fast.ai

86 Dec 31, 2022
Source code for our EMNLP'21 paper 《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》

Child-Tuning Source code for EMNLP 2021 Long paper: Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning. 1. Environ

46 Dec 12, 2022
PyTorch implementation of Pointnet2/Pointnet++

Pointnet2/Pointnet++ PyTorch Project Status: Unmaintained. Due to finite time, I have no plans to update this code and I will not be responding to iss

Erik Wijmans 1.2k Dec 29, 2022
Manipulation OpenAI Gym environments to simulate robots at the STARS lab

Manipulator Learning This repository contains a set of manipulation environments that are compatible with OpenAI Gym and simulated in pybullet. In par

STARS Laboratory 5 Dec 08, 2022
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction".

TGIN Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction". Files in the folder dataset/ electr

Alibaba 21 Dec 21, 2022
Malware Env for OpenAI Gym

Malware Env for OpenAI Gym Citing If you use this code in a publication please cite the following paper: Hyrum S. Anderson, Anant Kharkar, Bobby Fila

ENDGAME 563 Dec 29, 2022
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

163 Dec 22, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
Image-retrieval-baseline - MUGE Multimodal Retrieval Baseline

MUGE Multimodal Retrieval Baseline This repo is implemented based on the open_cl

47 Dec 16, 2022
Code for Mining the Benefits of Two-stage and One-stage HOI Detection

Status: Archive (code is provided as-is, no updates expected) PPO-EWMA [Paper] This is code for training agents using PPO-EWMA and PPG-EWMA, introduce

OpenAI 33 Dec 15, 2022
Ascend your Jupyter Notebook usage

Jupyter Ascending Sync Jupyter Notebooks from any editor About Jupyter Ascending lets you edit Jupyter notebooks from your favorite editor, then insta

Untitled AI 254 Jan 08, 2023
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
Codebase for Diffusion Models Beat GANS on Image Synthesis.

Codebase for Diffusion Models Beat GANS on Image Synthesis.

Katherine Crowson 128 Dec 02, 2022
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022