CVPR 2022 "Online Convolutional Re-parameterization"

Overview

OREPA: Online Convolutional Re-parameterization

This repo is the PyTorch implementation of our paper to appear in CVPR2022 on "Online Convolutional Re-parameterization", authored by Mu Hu, Junyi Feng, Jiashen Hua, Baisheng Lai, Jianqiang Huang, Xiaojin Gong and Xiansheng Hua from Zhejiang University and Alibaba Cloud.

What is Structural Re-parameterization?

  • Re-parameterization (Re-param) means different architectures can be mutually converted through equivalent transformation of parameters. For example, a branch of 1x1 convolution and a branch of 3x3 convolution, can be transferred into a single branch of 3x3 convolution for faster inference.
  • When the model for deployment is fixed, the task of re-param can be regarded as finding a complex training-time structure, which can be transfered back to the original one, for free performance improvements.

Why do we propose Online RE-PAram? (OREPA)

  • While current re-param blocks (ACNet, ExpandNet, ACNetv2, etc) are still feasible for small models, more complecated design for further performance gain on larger models could lead to unaffordable training budgets.
  • We observed that batch normalization (norm) layers are significant in re-param blocks, while their training-time non-linearity prevents us from optimizing computational costs during training.

What is OREPA?

OREPA is a two-step pipeline.

  • Linearization: Replace the branch-wise norm layers to scaling layers to enable the linear squeezing of a multi-branch/layer topology.
  • Squeezing: Squeeze the linearized block into a single layer, where the convolution upon feature maps is reduced from multiple times to one.

Overview

How does OREPA work?

  • Through OREPA we could reduce the training budgets while keeping a comparable performance. Then we improve accuracy by additional components, which brings minor extra training costs since they are merged in an online scheme.
  • We theoretically present that the removal of branch-wise norm layers risks a multi-branch structure degrading into a single-branch one, indicating that the norm-scaling layer replacement is critical for protecting branch diversity.

ImageNet Results

ImageNet2

Create a new issue for any code-related questions. Feel free to direct me as well at [email protected] for any paper-related questions.

Contents

  1. Dependency
  2. Checkpoints
  3. Training
  4. Evaluation
  5. Transfer Learning on COCO and Cityscapes
  6. About Quantization and Gradient Tweaking
  7. Citation

Dependency

Models released in this work is trained and tested on:

  • CentOS Linux
  • Python 3.8.8 (Anaconda 4.9.1)
  • PyTorch 1.9.0 / torchvision 0.10.0
  • NVIDIA CUDA 10.2
  • 4x NVIDIA V100 GPUs
pip install torch torchvision
pip install numpy matplotlib Pillow
pip install scikit-image

Checkpoints

Download our pre-trained models with OREPA:

Note that we don't need to decompress the pre-trained models. Just load the files of .pth.tar format directly.

Training

A complete list of training options is available with

python train.py -h
python test.py -h
python convert.py -h
  1. Train ResNets (ResNeXt and WideResNet included)
CUDA_VISIBLE_DEVICES="0,1,2,3" python train.py -a ResNet-18 -t OREPA --data [imagenet-path]
# -a for architecture (ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-18-2x, ResNeXt-50)
# -t for re-param method (base, DBB, OREPA)
  1. Train RepVGGs
CUDA_VISIBLE_DEVICES="0,1,2,3" python train.py -a RepVGG-A0 -t OREPA_VGG --data [imagenet-path]
# -a for architecture (RepVGG-A0, RepVGG-A1, RepVGG-A2)
# -t for re-param method (base, RepVGG, OREPA_VGG)

Evaluation

  1. Use your self-trained model or our pretrained model
CUDA_VISIBLE_DEVICES="0" python test.py train [trained-model-path] -a ResNet-18 -t OREPA
  1. Convert the training-time models into inference-time models
CUDA_VISIBLE_DEVICES="0" python convert.py [trained-model-path] [deploy-model-path-to-save] -a ResNet-18 -t OREPA
  1. Evaluate with the converted model
CUDA_VISIBLE_DEVICES="0" python test.py deploy [deploy-model-path] -a ResNet-18 -t OREPA

Transfer Learning on COCO and Cityscapes

We use mmdetection and mmsegmentation tools on COCO and Cityscapes respectively. If you decide to use our pretrained model for downstream tasks, it is strongly suggested that the learning rate of the first stem layer should be fine adjusted, since the deep linear stem layer has a very different weight distribution from the vanilla one after ImageNet training. Contact @Sixkplus (Junyi Feng) for more details on configurations and checkpoints of the reported ResNet-50-backbone models.

About Quantization and Gradient Tweaking

For re-param models, special weight regulization strategies are required for furthur quantization. Meanwhile, dynamic gradient tweaking or differential searching methods might greatly boost the performance. Currently we have not deployed such techniques to OREPA yet. However such methods could be probably applied to our industrial usage in the future. For experience exchanging and sharing on such topics please contact @Sixkplus (Junyi Feng).

Citation

If you use our code or method in your work, please cite the following:

@inproceedings{hu22OREPA,
	title={Online Convolutional Re-parameterization},
	author={Mu Hu and Junyi Feng and Jiashen Hua and Baisheng Lai and Jianqiang Huang and Xiansheng Hua and Xiaojin Gong},
	booktitle={CVPR},
	year={2022}
}

Related Repositories

Codes of this work is developed upon Xiaohan Ding's re-param repositories "Diverse Branch Block: Building a Convolution as an Inception-like Unit" and "RepVGG: Making VGG-style ConvNets Great Again" with similar protocols. Xiaohan Ding is a Ph.D. from Tsinghua University and an expert in structural re-parameterization.

Owner
Mu Hu
B.Eng. & M.Sc, Zhejiang University, China. I will be in pursuit of a Ph.D. degree in HKUST.
Mu Hu
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022
LSTM-VAE Implementation and Relevant Evaluations

LSTM-VAE Implementation and Relevant Evaluations Before using any file in this repository, please create two directories under the root directory name

Lan Zhang 5 Oct 08, 2022
PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 279 Jan 04, 2023
The implementation of DeBERTa

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 06, 2023
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian Schäfer 0 Jun 19, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors By Anargyros Chatzitofis, Dimitris Zarpalas, Stefanos Kollias

tofis 24 Oct 08, 2022
A generator of point clouds dataset for PyPipes.

CloudPipesGenerator Documentation | Colab Notebooks | Video Tutorials | Master Degree website A generator of point clouds dataset for PyPipes. TODO Us

1 Jan 13, 2022
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
The code for paper Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation Algorithm

Quantum Qubit Rotation Algorithm Single qubit rotation gates $$ U(\Theta)=\bigotimes_{i=1}^n R_x (\phi_i) $$ QQRA for the max-cut problem This code wa

SheffieldWang 0 Oct 18, 2021
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
Code for MSc Quantitative Finance Dissertation

MSc Dissertation Code ReadMe Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks Curtis Nybo MSc Quantitative F

2 Dec 01, 2022
Implementation of Gans

GAN Generative Adverserial Networks are an approach to generative data modelling using Deep learning methods. I have currently implemented : DCGAN on

Sibam Parida 5 Sep 07, 2021
Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021

SGMNet Implementation PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai C

87 Dec 11, 2022
Parameterized Explainer for Graph Neural Network

PGExplainer This is a Tensorflow implementation of the paper: Parameterized Explainer for Graph Neural Network https://arxiv.org/abs/2011.04573 NeurIP

Dongsheng Luo 89 Dec 12, 2022
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !

Gerasimov Maxim 93 Dec 20, 2022
Geometric Vector Perceptrons --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Implementation of equivariant GVP-GNNs as described in Learning from Protein Structure with Geometric Vector Perceptrons b

Dror Lab 142 Dec 29, 2022