CVPR 2022 "Online Convolutional Re-parameterization"

Overview

OREPA: Online Convolutional Re-parameterization

This repo is the PyTorch implementation of our paper to appear in CVPR2022 on "Online Convolutional Re-parameterization", authored by Mu Hu, Junyi Feng, Jiashen Hua, Baisheng Lai, Jianqiang Huang, Xiaojin Gong and Xiansheng Hua from Zhejiang University and Alibaba Cloud.

What is Structural Re-parameterization?

  • Re-parameterization (Re-param) means different architectures can be mutually converted through equivalent transformation of parameters. For example, a branch of 1x1 convolution and a branch of 3x3 convolution, can be transferred into a single branch of 3x3 convolution for faster inference.
  • When the model for deployment is fixed, the task of re-param can be regarded as finding a complex training-time structure, which can be transfered back to the original one, for free performance improvements.

Why do we propose Online RE-PAram? (OREPA)

  • While current re-param blocks (ACNet, ExpandNet, ACNetv2, etc) are still feasible for small models, more complecated design for further performance gain on larger models could lead to unaffordable training budgets.
  • We observed that batch normalization (norm) layers are significant in re-param blocks, while their training-time non-linearity prevents us from optimizing computational costs during training.

What is OREPA?

OREPA is a two-step pipeline.

  • Linearization: Replace the branch-wise norm layers to scaling layers to enable the linear squeezing of a multi-branch/layer topology.
  • Squeezing: Squeeze the linearized block into a single layer, where the convolution upon feature maps is reduced from multiple times to one.

Overview

How does OREPA work?

  • Through OREPA we could reduce the training budgets while keeping a comparable performance. Then we improve accuracy by additional components, which brings minor extra training costs since they are merged in an online scheme.
  • We theoretically present that the removal of branch-wise norm layers risks a multi-branch structure degrading into a single-branch one, indicating that the norm-scaling layer replacement is critical for protecting branch diversity.

ImageNet Results

ImageNet2

Create a new issue for any code-related questions. Feel free to direct me as well at [email protected] for any paper-related questions.

Contents

  1. Dependency
  2. Checkpoints
  3. Training
  4. Evaluation
  5. Transfer Learning on COCO and Cityscapes
  6. About Quantization and Gradient Tweaking
  7. Citation

Dependency

Models released in this work is trained and tested on:

  • CentOS Linux
  • Python 3.8.8 (Anaconda 4.9.1)
  • PyTorch 1.9.0 / torchvision 0.10.0
  • NVIDIA CUDA 10.2
  • 4x NVIDIA V100 GPUs
pip install torch torchvision
pip install numpy matplotlib Pillow
pip install scikit-image

Checkpoints

Download our pre-trained models with OREPA:

Note that we don't need to decompress the pre-trained models. Just load the files of .pth.tar format directly.

Training

A complete list of training options is available with

python train.py -h
python test.py -h
python convert.py -h
  1. Train ResNets (ResNeXt and WideResNet included)
CUDA_VISIBLE_DEVICES="0,1,2,3" python train.py -a ResNet-18 -t OREPA --data [imagenet-path]
# -a for architecture (ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-18-2x, ResNeXt-50)
# -t for re-param method (base, DBB, OREPA)
  1. Train RepVGGs
CUDA_VISIBLE_DEVICES="0,1,2,3" python train.py -a RepVGG-A0 -t OREPA_VGG --data [imagenet-path]
# -a for architecture (RepVGG-A0, RepVGG-A1, RepVGG-A2)
# -t for re-param method (base, RepVGG, OREPA_VGG)

Evaluation

  1. Use your self-trained model or our pretrained model
CUDA_VISIBLE_DEVICES="0" python test.py train [trained-model-path] -a ResNet-18 -t OREPA
  1. Convert the training-time models into inference-time models
CUDA_VISIBLE_DEVICES="0" python convert.py [trained-model-path] [deploy-model-path-to-save] -a ResNet-18 -t OREPA
  1. Evaluate with the converted model
CUDA_VISIBLE_DEVICES="0" python test.py deploy [deploy-model-path] -a ResNet-18 -t OREPA

Transfer Learning on COCO and Cityscapes

We use mmdetection and mmsegmentation tools on COCO and Cityscapes respectively. If you decide to use our pretrained model for downstream tasks, it is strongly suggested that the learning rate of the first stem layer should be fine adjusted, since the deep linear stem layer has a very different weight distribution from the vanilla one after ImageNet training. Contact @Sixkplus (Junyi Feng) for more details on configurations and checkpoints of the reported ResNet-50-backbone models.

About Quantization and Gradient Tweaking

For re-param models, special weight regulization strategies are required for furthur quantization. Meanwhile, dynamic gradient tweaking or differential searching methods might greatly boost the performance. Currently we have not deployed such techniques to OREPA yet. However such methods could be probably applied to our industrial usage in the future. For experience exchanging and sharing on such topics please contact @Sixkplus (Junyi Feng).

Citation

If you use our code or method in your work, please cite the following:

@inproceedings{hu22OREPA,
	title={Online Convolutional Re-parameterization},
	author={Mu Hu and Junyi Feng and Jiashen Hua and Baisheng Lai and Jianqiang Huang and Xiansheng Hua and Xiaojin Gong},
	booktitle={CVPR},
	year={2022}
}

Related Repositories

Codes of this work is developed upon Xiaohan Ding's re-param repositories "Diverse Branch Block: Building a Convolution as an Inception-like Unit" and "RepVGG: Making VGG-style ConvNets Great Again" with similar protocols. Xiaohan Ding is a Ph.D. from Tsinghua University and an expert in structural re-parameterization.

Owner
Mu Hu
B.Eng. & M.Sc, Zhejiang University, China. I will be in pursuit of a Ph.D. degree in HKUST.
Mu Hu
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
auto-tuning momentum SGD optimizer

YellowFin YellowFin is an auto-tuning optimizer based on momentum SGD which requires no manual specification of learning rate and momentum. It measure

Jian Zhang 288 Nov 19, 2022
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 02, 2023
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
Underwater industrial application yolov5m6

This project wins the intelligent algorithm contest finalist award and stands out from over 2000teams in China Underwater Robot Professional Contest, entering the final of China Underwater Robot Prof

8 Nov 09, 2022
Robocop is your personal mini voice assistant made using Python.

Robocop-VoiceAssistant To use this project, you should have python installed in your system. If you don't have python installed, install it beforehand

Sohil Khanduja 3 Feb 26, 2022
Awesome Transformers in Medical Imaging

This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,

Fahad Shamshad 666 Jan 06, 2023
[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Semantics Disentangling for Generalized Zero-shot Learning This is the official implementation for paper Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, J

25 Dec 06, 2022
âš–ïžđŸ”đŸ”źđŸ•”ïžâ€â™‚ïžđŸŠčđŸ–Œïž Code for *Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances* paper.

Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances This repository contains the code for Measuring the Co

Daniel Steinberg 0 Nov 06, 2022
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN

A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN Please follow Faster R-CNN and DAF to complete the environment confi

2 Jan 12, 2022
Delta Conformity Sociopatterns Analysis - Delta Conformity Sociopatterns Analysis

Delta_Conformity_Sociopatterns_Analysis ∆-Conformity is a local homophily measur

2 Jan 09, 2022
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
TDmatch is a Python library developed to perform matching tasks in three categories:

TDmatch TDmatch is a Python library developed to perform matching tasks in three categories: Text to Data which matches tuples of a table to text docu

Naser Ahmadi 5 Aug 11, 2022
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

YeongHyeon Park 7 Aug 28, 2022
Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it

Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics.

mani 1.2k Jan 07, 2023
Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

Mila 456 Nov 07, 2022
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022