Myia prototyping

Related tags

Deep Learningmyia
Overview

Myia

Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their gradients. The main application Myia aims to support is research in artificial intelligence, in particular deep learning algorithms.

  • Define a model using a subset of Python, which is compiled to Myia (interfaces in other languages than Python may follow). This subset is general purpose and includes looping constructs and recursion. It excludes side effects and inplace operations.
  • Ask for the derivative of your model. Derivatives are fully supported for all control flow and all differentiable primitives.
  • Compile to efficient CPU and GPU code that optimizes use of your resources.

If you want to play with the current implementation, you can check out ALPHA.md

A short document explaining some of Myia's inner workings is available here

Status

Myia is currently under development and is not yet ready for use. We are optimistic about having an alpha version to play with around the start of 2020.

See Roadmap.

Motivation

Development in artificial intelligence has been undergoing a boom in the past decade, chiefly due to the success of deep neural networks. The training of a neural network is a sort of differentiable program: one writes a program to compute the output and a cost, and then one computes the derivative of that cost with respect to the model's parameters to determine how they should be updated.

Differentiation can be automated, but mainstream programming languages offer no support for this, hence the need for libraries or programming languages that can reliably support these applications.

The current leading solutions for deep learning fall in two camps:

Computation graph-based solutions such as TensorFlow, Theano and MXNet support automatic differentiation and are very well optimized, but they are not fully general, with only limited support for loops and none for general recursion. Thus models like recursive neural networks are tricky and awkward to write.

Operator overloading solutions such as PyTorch or Autograd use a dynamic approach to automatic differentiation which makes them much more general, but they are tightly coupled to the Python language and cannot reap the benefits of an optimizing compiler. They also involve a certain quantity of overhead per operation which discourages composing small cheap operations.

Myia's solution is to define a strongly-typed, general-purpose intermediate representation with an IR-level automatic differentiation transformation, which can then be compiled and optimized for various targets, thereby getting the best of both leading approaches.

Roadmap

Current

  • Parser: Supports def, if, for, while, operators, function calls, class and methods (limited support).
  • Intermediate representation: Implemented, with an array of utilities.
  • Debug VM: Faithfully runs the IR.
  • VM: Works on the simplified/optimized IR.
  • Primitives: Scalar primitives work, as well as map, reduce, broadcasting, 2D convolutions, concat/split, and many other operations.
  • Type system: Types are inferred without the need for annotations. Shapes can also be inferred. Myia supports recursive ADTs (e.g. tree data structures).
  • Optimization: Pattern-based optimizations, inlining, constant propagation, common subexpression elimination, closure conversion.
  • Automatic differentiation: Second order differentiation is not yet in working order.
  • GPU support: Using Relay or PyTorch.

In development

  • Compiler optimization: The compiler currently needs to be optimized to reduce compile times.
  • Auto-monadization: We are working to support print statements and random number generation through an auto-monadization system that can automatically keep track of the IO or RNG state.

Next steps

  • Error messages: We need to make sure that every likely mistake leads to an understandable and traceable error diagnosis.

Near future

  • Serialization: Serializing optimized graphs will allow for greater performance across runs and greater portability across systems.
  • Debugger: Intent is to have a step debugger for Myia. There used to be a working one for a previous version of the IR, so this should not pose a problem.
  • More Python syntax: break/continue.

After Beta

  • Even more Python syntax: Support for these features is not certain.
    • Augmented assignment (under restrictions)
    • yield and await
  • Support other languages: Which ones depend on demand. A new language is also a possibility.

Publications

Citation

If you use Myia for a scientific paper, please cite the above paper or mention Myia in the acknowledgements. It would be great if you could also let us know about it.

Owner
Mila
Quebec Artificial Intelligence Institute
Mila
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021)

Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021) Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang, Hongyang Li, Qinhong Jia

Yunsong Zhou 51 Dec 14, 2022
Fully-automated scripts for collecting AI-related papers

AI-Paper-collector Fully-automated scripts for collecting AI-related papers List of Conferences to crawel ACL: 21-19 (including findings) EMNLP: 21-19

Gordon Lee 776 Jan 08, 2023
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Abhay Gupta 161 Dec 08, 2022
Learning to Segment Instances in Videos with Spatial Propagation Network

Learning to Segment Instances in Videos with Spatial Propagation Network This paper is available at the 2017 DAVIS Challenge website. Check our result

Jingchun Cheng 145 Sep 28, 2022
LabelImg is a graphical image annotation tool.

LabelImgPlus LabelImg is a graphical image annotation tool. This project is not updated with new functions now. More functions are supported with Labe

lzx1413 200 Dec 20, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
Masked regression code - Masked Regression

Masked Regression MR - Python Implementation This repositery provides a python implementation of MR (Masked Regression). MR can efficiently synthesize

Arbish Akram 1 Dec 23, 2021
FishNet: One Stage to Detect, Segmentation and Pose Estimation

FishNet FishNet: One Stage to Detect, Segmentation and Pose Estimation Introduction In this project, we combine target detection, instance segmentatio

1 Oct 05, 2022
Beginner-friendly repository for Hacktober Fest 2021. Start your contribution to open source through baby steps. 💜

Hacktober Fest 2021 🎉 Open source is changing the world – one contribution at a time! 🎉 This repository is made for beginners who are unfamiliar wit

Abhilash M Nair 32 Dec 11, 2022
Implementation of the GBST block from the Charformer paper, in Pytorch

Charformer - Pytorch Implementation of the GBST (gradient-based subword tokenization) module from the Charformer paper, in Pytorch. The paper proposes

Phil Wang 105 Dec 26, 2022
MAME is a multi-purpose emulation framework.

MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.

Michael Murray 6 Oct 25, 2020
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
offical implement of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021

LifelongReID Offical implementation of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021 by Nan Pu, Wei Chen, Yu L

PeterPu 76 Dec 08, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

THESIS_CAIRONE_FIORENTINO Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques" GENERATE TOKE

cairone_fiorentino97 1 Dec 10, 2021
공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다.

ObsCare_Main 소개 공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다. CCTV의 대수가 급격히 늘어나면서 관리와 효율성 문제와 더불어, 곳곳에 설치된 CCTV를 개별 관제하는 것으로는 응급 상

5 Jul 07, 2022
Tools for manipulating UVs in the Blender viewport.

UV Tool Suite for Blender A set of tools to make editing UVs easier in Blender. These tools can be accessed wither through the Kitfox - UV panel on th

35 Oct 29, 2022
IEEE Winter Conference on Applications of Computer Vision 2022 Accepted

SSKT(Accepted WACV2022) Concept map Dataset Image dataset CIFAR10 (torchvision) CIFAR100 (torchvision) STL10 (torchvision) Pascal VOC (torchvision) Im

1 Nov 17, 2022
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL: Graph Contrastive Learning for PyTorch PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL com

GCL: Graph Contrastive Learning Library for PyTorch 594 Jan 08, 2023