IEEE Winter Conference on Applications of Computer Vision 2022 Accepted

Overview

SSKT(Accepted WACV2022)

Concept map

concept

Dataset

  • Image dataset
    • CIFAR10 (torchvision)
    • CIFAR100 (torchvision)
    • STL10 (torchvision)
    • Pascal VOC (torchvision)
    • ImageNet(I) (torchvision)
    • Places365(P)
  • Video dataset

Pre-trained models

  • Imagenet
    • we used the pre-trained model in torchvision.
    • using resnet18, 50
  • Places365

Option

  • isSource
    • Single Source Transfer Module
    • Transfer Module X, Only using auxiliary layer
  • transfer_module
    • Single Source Transfer Module
  • multi_source
    • multiple task transfer learning

Training

  • 2D PreLeKT
 python main.py --model resnet20  --source_arch resnet50 --sourceKind places365 --result /raid/video_data/output/PreLeKT --dataset stl10 --lr 0.1 --wd 5e-4 --epochs 200 --classifier_loss_method ce --auxiliary_loss_method kd --isSource --multi_source --transfer_module
  • 3D PreLeKT
 python main.py --root_path /raid/video_data/ucf101/ --video_path frames --annotation_path ucf101_01.json  --result_path /raid/video_data/output/PreLeKT --n_classes 400 --n_finetune_classes 101 --model resnet --model_depth 18 --resnet_shortcut A --batch_size 128 --n_threads 4 --pretrain_path /nvadmin/Pretrained_model/resnet-18-kinetics.pth --ft_begin_index 4 --dataset ucf101 --isSource --transfer_module --multi_source

Experiment

Comparison with other knowledge transfer methods.

  • For a further analysis of SSKT, we compared its performance with those of typical knowledge transfer methods, namely KD[1] and DML[3]
  • For KD, the details for learning were set the same as in [1], and for DML, training was performed in the same way as in [3].
  • In the case of 3D-CNN-based action classification[2], both learning from scratch and fine tuning results were included
Tt Model KD DML SSKT(Ts)
CIFAR10 ResNet20 91.75±0.24 92.37±0.15 92.46±0.15 (P+I)
CIFAR10 ResNet32 92.61±0.31 93.26±0.21 93.38±0.02 (P+I)
CIFAR100 ResNet20 68.66±0.24 69.48±0.05 68.63±0.12 (I)
CIFAR100 ResNet32 70.5±0.05 71.9±0.03 70.94±0.36 (P+I)
STL10 ResNet20 77.67±1.41 78.23±1.23 84.56±0.35 (P+I)
STL10 ResNet32 76.07±0.67 77.14±1.64 83.68±0.28 (I)
VOC ResNet18 64.11±0.18 39.89±0.07 76.42±0.06 (P+I)
VOC ResNet34 64.57±0.12 39.97±0.16 77.02±0.02 (P+I)
VOC ResNet50 62.39±0.6 39.65±0.03 77.1±0.14 (P+I)
UCF101 3D ResNet18(scratch) - 13.8 52.19(P+I)
UCF101 3D ResNet18(fine-tuning) - 83.95 84.58 (P)
HMDB51 3D ResNet18(scratch) - 3.01 17.91 (P+I)
HMDB51 3D ResNet18(fine-tuning) - 56.44 57.82 (P)

The performance comparison with MAXL[4], another auxiliary learning-based transfer learning method

  • The difference between the learning scheduler in MAXL and in our experiment is whether cosine annealing scheduler and focal loss are used or not.
  • In VGG16, SSKT showed better performance in all settings. In ResNet20, we also showed better performance in our settings than MAXL in all settings.
Tt Model MAXL (ψ[i]) SSKT (Ts, Loss ) Ts Model
CIFAR10 VGG16 93.49±0.05 (5) 94.1±0.1 (I, F) VGG16
CIFAR10 VGG16 - 94.22±0.02 (I, CE) VGG16
CIFAR10 ResNet20 91.56±0.16 (10) 91.48±0.03 (I, F) VGG16
CIFAR10 ResNet20 - 92.46±0.15 (P+I, CE) ResNet50, ResNet50

Citation

If you use SSKD in your research, please consider citing:

@InProceedings{SSKD_2022_WACV,
author = {Seungbum Hong, Jihun Yoon, and Min-Kook Choi},
title = {Self-Supervised Knowledge Transfer via Loosely Supervised Auxiliary Tasks},
booktitle = {In The IEEE Winter Conference on Applications of Computer Vision (WACV)},
month = {January},
year = {2022}
}

References

Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation Introduction In this work, we propose a new method

NVIDIA Research Projects 132 Dec 13, 2022
[AAAI2022] Source code for our paper《Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning》

SSVC The source code for paper [Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning] samples of the

7 Oct 26, 2022
[CVPR 2022] Thin-Plate Spline Motion Model for Image Animation.

[CVPR2022] Thin-Plate Spline Motion Model for Image Animation Source code of the CVPR'2022 paper "Thin-Plate Spline Motion Model for Image Animation"

yoyo-nb 1.4k Dec 30, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 01, 2023
In the case of your data having only 1 channel while want to use timm models

timm_custom Description In the case of your data having only 1 channel while want to use timm models (with or without pretrained weights), run the fol

2 Nov 26, 2021
Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Hydra: An Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems Paper Finding Semantic Bugs in File Systems with an Extensible Fuzzin

gts3.org (<a href=[email protected])"> 129 Dec 15, 2022
Manipulation OpenAI Gym environments to simulate robots at the STARS lab

Manipulator Learning This repository contains a set of manipulation environments that are compatible with OpenAI Gym and simulated in pybullet. In par

STARS Laboratory 5 Dec 08, 2022
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color

The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color Overview Code and dataset for The World of an Octopus: H

1 Nov 13, 2021
Repository of 3D Object Detection with Pointformer (CVPR2021)

3D Object Detection with Pointformer This repository contains the code for the paper 3D Object Detection with Pointformer (CVPR 2021) [arXiv]. This wo

Zhuofan Xia 117 Jan 06, 2023
A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding his way.

GuidEye A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding h

Munal Jain 0 Aug 09, 2022
dualPC.R contains the R code for the main functions.

dualPC.R contains the R code for the main functions. dualPC_sim.R contains an example run with the different PC versions; it calls dualPC_algs.R whic

3 May 30, 2022
Red Team tool for exfiltrating files from a target's Google Drive that you have access to, via Google's API.

GD-Thief Red Team tool for exfiltrating files from a target's Google Drive that you(the attacker) has access to, via the Google Drive API. This includ

Antonio Piazza 39 Dec 27, 2022
Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection, AAAI 2021.

Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection This repository is an official implementation of the AAAI 2021 paper Co-mi

MEGVII Research 20 Dec 07, 2022
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022