PyTorch implementation for NED. It can be used to manipulate the facial emotions of actors in videos based on emotion labels or reference styles.

Related tags

Deep LearningNED
Overview

Neural Emotion Director (NED) - Official Pytorch Implementation

Example video of facial emotion manipulation while retaining the original mouth motion, i.e. speech. We show examples of 3 basic emotions.



This repository contains the source code for our paper:

Neural Emotion Director: Speech-preserving semantic control of facial expressions in “in-the-wild” videos
Foivos Paraperas Papantoniou, Panagiotis P. Filntisis, Petros Maragos, Anastasios Roussos

Project site: https://foivospar.github.io/NED/

Abstract: In this paper, we introduce a novel deep learning method for photo-realistic manipulation of the emotional state of actors in ``in-the-wild'' videos. The proposed method is based on a parametric 3D face representation of the actor in the input scene that offers a reliable disentanglement of the facial identity from the head pose and facial expressions. It then uses a novel deep domain translation framework that alters the facial expressions in a consistent and plausible manner, taking into account their dynamics. Finally, the altered facial expressions are used to photo-realistically manipulate the facial region in the input scene based on an especially-designed neural face renderer. To the best of our knowledge, our method is the first to be capable of controlling the actor’s facial expressions by even using as a sole input the semantic labels of the manipulated emotions, while at the same time preserving the speech-related lip movements. We conduct extensive qualitative and quantitative evaluations and comparisons, which demonstrate the effectiveness of our approach and the especially promising results that we obtain. Our method opens a plethora of new possibilities for useful applications of neural rendering technologies, ranging from movie post-production and video games to photo-realistic affective avatars.

Getting Started

Clone the repo:

git clone https://github.com/foivospar/NED
cd NED

Requirements

Create a conda environment, using the provided environment.yml file.

conda env create -f environment.yml

Activate the environment.

conda activate NED

Files

  1. Follow the instructions in DECA (under the Prepare data section) to acquire the 3 files ('generic_model.pkl', 'deca_model.tar', 'FLAME_albedo_from_BFM.npz') and place them under "./DECA/data".
  2. Fill out the form to get access to the FSGAN's pretrained models. Then download 'lfw_figaro_unet_256_2_0_segmentation_v1.pth' (from the "v1" folder) and place it under "./preprocessing/segmentation".

Video preprocessing

To train or test the method on a specific subject, first create a folder for this subject and place the video(s) of this subject into a "videos" subfolder. To acquire the training/test videos used in our experiments, please contact us.

For example, for testing the method on Tarantino's clip, a structure similar to the following must be created:

Tarantino ----- videos ----- Tarantino_t.mp4

Under the above structure, there are 3 options for the video(s) placed in the "videos" subfolder:

  1. Use it as test footage for this actor and apply our method for manipulating his/her emotion.
  2. Use this footage to train a neural face renderer on the actor (e.g. use the training video one of our 6 Youtube actors, or a footage of similar duration for a new identity).
  3. Use it only as reference clip for transferring the expressive style of the actor to another subject.

To preprocess the video (face detection, segmentation, landmark detection, 3D reconstruction, alignment) run:

./preprocess.sh <celeb_path> <mode>
  • is the path to the folder used for this actor.
  • is one of {train, test, reference} for each of the above cases respectively.

After successfull execution, the following structure will be created:


   
     ----- videos -----video.mp4 (e.g. "Tarantino_t.mp4")
                   |        |
                   |        ---video.txt (e.g. "Tarantino_t.txt", stores the per-frame bounding boxes, created only if mode=test)
                   |
                   --- images (cropped and resized images)
                   |
                   --- full_frames (original frames of the video, created only if mode=test or mode=reference)
                   |
                   --- eye_landmarks (created only if mode=train or mode=test)
                   |
                   --- eye_landmarks_aligned (same as above, but aligned)
                   |
                   --- align_transforms (similarity transformation matrices, created only if mode=train or mode=test)
                   |
                   --- faces (segmented images of the face, created only if mode=train or mode=test)
                   |
                   --- faces_aligned (same as above, but aligned)
                   |
                   --- masks (binary face masks, created only if mode=train or mode=test)
                   |
                   --- masks_aligned (same as above, but aligned)
                   |
                   --- DECA (3D face model parameters)
                   |
                   --- nmfcs (NMFC images, created only if mode=train or mode=test)
                   |
                   --- nmfcs_aligned (same as above, but aligned)
                   |
                   --- shapes (detailed shape images, created only if mode=train or mode=test)
                   |
                   --- shapes_aligned (same as above, but aligned)

   

1.Manipulate the emotion on a test video

Download our pretrained manipulator from here and unzip the checkpoint. We currently provide only the test scripts for the manipulator.

Also, preprocess the test video for one of our target Youtube actors or use a new actor (requires training a new neural face renderer).

For our Youtube actors, we provide pretrained renderer models here. Download the .zip file for the desired actor and unzip it.

Then, assuming that preprocessing (in test mode) has been performed for the selected test video (see above), you can manipulate the expressions of the celebrity in this video by one of the following 2 ways:

1.Label-driven manipulation

Select one of the 7 basic emotions (happy, angry, surprised, neutral, fear, sad, disgusted) and run :

python manipulator/test.py --celeb <celeb_path> --checkpoints_dir ./manipulator_checkpoints --trg_emotions <emotions> --exp_name <exp_name>
  • is the path to the folder used for this actor's test footage (e.g. "./Tarantino").
  • is one or more of the 7 emotions. If one emotion is given, e.g. --trg_emotions happy, all the video will be converted to happy, whereas for 2 or more emotions, such as --trg_emotions happy angry the first half of the video will be happy, the second half angry and so on.
  • is the name of the sub-folder that will be created under the for storing the results.
2.Reference-driven manipulation

In this case, the reference video should first be preprocessed (see above) in reference mode. Then run:

python manipulator/test.py --celeb <celeb_path> --checkpoints_dir ./manipulator_checkpoints --ref_dirs <ref_dirs> --exp_name <exp_name>
  • is the path to the folder used for this actor's test footage (e.g. "./Tarantino").
  • is one or more reference videos. In particular, the path to the "DECA" sublfolder has to be given. As with labels, more than one paths can be given, in which case the video will be transformed sequentially according to those reference styles.
  • is the name of the sub-folder that will be created under the for storing the results.

Then, run:

./postprocess.sh <celeb_path> <exp_name> <checkpoints_dir>
  • is the path to the test folder used for this actor.
  • is the name you have given to the experiment in the previous step.
  • is the path to the pretrained renderer for this actor (e.g. "./checkpoints_tarantino" for Tarantino).

This step performs neural rendering, un-alignment and blending of the modified faces. Finally, you should see the full_frames sub-folder into / . This contains the full frames of the video with the altered emotion. To convert them to video, run:

python postprocessing/images2video.py --imgs_path <full_frames_path> --out_path <out_path> --audio <original_video_path>
  • is the path to the full frames (e.g. "./Tarantino/happy/full_frames").
  • is the path for saving the video (e.g. "./Tarantino_happy.mp4").
  • is the path to the original video (e.g. "./Tarantino/videos/tarantino_t.mp4"). This argment is optional and is used to add the original audio to the generated video.

2.Train a neural face renderer for a new celebrity

Download our pretrained meta-renderer ("checkpoints_meta-renderer.zip") from the link above and unzip the checkpoints.

Assuming that the training video of the new actor has been preprocessed (in train mode) as described above, you can then finetune our meta-renderer on this actor by running:

python renderer/train.py --celeb <celeb_path> --checkpoints_dir <checkpoints_dir> --load_pretrain <pretrain_checkpoints> --which_epoch 15
  • is the path to the train folder used for the new actor.
  • is the new path where the checkpoints will be saved.
  • is the path with the checkpoints of the pretrained meta-renderer (e.g. "./checkpoints_meta-renderer")

3.Preprocess a reference video

If you want to use a reference clip (e.g. from a movie) of another actor to transfer his/her speaking style to your test actor, simply preprocess the reference actor's clip as described above (mode=reference) and follow the instructions on Reference-driven manipulation.

Citation

If you find this work useful for your research, please cite our paper.

@article{paraperas2021neural,
         title={Neural Emotion Director: Speech-preserving semantic control of facial expressions in "in-the-wild" videos}, 
         author={Paraperas Papantoniou, Foivos and Filntisis, Panagiotis P. and Maragos, Petros and Roussos, Anastasios},
         journal={arXiv preprint arXiv:2112.00585},
         year={2021}
}

Acknowledgements

We would like to thank the following great repositories that our code borrows from:

Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
An SE(3)-invariant autoencoder for generating the periodic structure of materials

Crystal Diffusion Variational AutoEncoder This software implementes Crystal Diffusion Variational AutoEncoder (CDVAE), which generates the periodic st

Tian Xie 94 Dec 10, 2022
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022
This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods

pyLiDAR-SLAM This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods, which can easily be evaluated

Kitware, Inc. 208 Dec 16, 2022
🔊 Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
A flexible ML framework built to simplify medical image reconstruction and analysis experimentation.

meddlr Getting Started Meddlr is a config-driven ML framework built to simplify medical image reconstruction and analysis problems. Installation To av

Arjun Desai 36 Dec 16, 2022
C3D is a modified version of BVLC caffe to support 3D ConvNets.

C3D C3D is a modified version of BVLC caffe to support 3D convolution and pooling. The main supporting features include: Training or fine-tuning 3D Co

Meta Archive 1.1k Nov 14, 2022
Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing

EGFNet Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing Dataset and Results Test maps: 百度网盘 提取码:zust Citation @ARTICLE{ author={Zhou,

ShaohuaDong 10 Dec 08, 2022
Neural models of common sense. 🤖

Unicorn on Rainbow Neural models of common sense. This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a N

AI2 60 Jan 05, 2023
GULAG: GUessing LAnGuages with neural networks

GULAG: GUessing LAnGuages with neural networks Classify languages in text via neural networks. Привет! My name is Egor. Was für ein herrliches Frühl

Egor Spirin 12 Sep 02, 2022
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample

NVIDIA Corporation 147 Dec 27, 2022
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
Systematic generalisation with group invariant predictions

Requirements are Python 3, TensorFlow v1.14, Numpy, Scipy, Scikit-Learn, Matplotlib, Pillow, Scikit-Image, h5py, tqdm. Experiments were run on V100 GPUs (16 and 32GB).

Faruk Ahmed 30 Dec 01, 2022
Iris prediction model is used to classify iris species created julia's DecisionTree, DataFrames, JLD2, PlotlyJS and Statistics packages.

Iris Species Predictor Iris prediction is used to classify iris species using their sepal length, sepal width, petal length and petal width created us

Siva Prakash 2 Jan 06, 2022
A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr

Microsoft 28 Oct 10, 2022
ICSS - Interactive Continual Semantic Segmentation

Presentation This repository contains the code of our paper: Weakly-supervised c

Alteia 9 Jul 23, 2022
ilpyt: imitation learning library with modular, baseline implementations in Pytorch

ilpyt The imitation learning toolbox (ilpyt) contains modular implementations of common deep imitation learning algorithms in PyTorch, with unified in

The MITRE Corporation 11 Nov 17, 2022
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022