Defending against Model Stealing via Verifying Embedded External Features

Overview

Defending against Model Stealing Attacks via Verifying Embedded External Features

This is the official implementation of our paper Defending against Model Stealing Attacks via Verifying Embedded External Features, accepted by the AAAI Conference on Artificial Intelligence (AAAI), 2022. This research project is developed based on Python 3 and Pytorch, created by Yiming Li and Linghui Zhu.

Pipeline

Pipeline

Requirements

To install requirements:

pip install -r requirements.txt

Make sure the directory follows:

stealingverification
├── data
│   ├── cifar10
│   └── ...
├── gradients_set 
│   
├── prob
│   
├── network
│   
├── model
│   ├── victim
│   └── ...
|

Dataset Preparation

Make sure the directory data follows:

data
├── cifar10_seurat_10%
|   ├── train
│   └── test
├── cifar10  
│   ├── train
│   └── test
├── subimage_seurat_10%
│   ├── train
|   ├── val
│   └── test
├── sub-imagenet-20
│   ├── train
|   ├── val
│   └── test

📋 Data Download Link:
data

Model Preparation

Make sure the directory model follows:

model
├── victim
│   ├── vict-wrn28-10.pt
│   └── ...
├── benign
│   ├── benign-wrn28-10.pt
│   └── ...
├── attack
│   ├── atta-label-wrn16-1.pt
│   └── ...
└── clf

📋 Model Download Link:
model

Collecting Gradient Vectors

Collect gradient vectors of victim and benign model with respect to transformed images.

CIFAR-10:

python gradientset.py --model=wrn16-1 --m=./model/victim/vict-wrn16-1.pt --dataset=cifar10 --gpu=0
python gradientset.py --model=wrn28-10 --m=./model/victim/vict-wrn28-10.pt --dataset=cifar10 --gpu=0
python gradientset.py --model=wrn16-1 --m=./model/benign/benign-wrn16-1.pt --dataset=cifar10 --gpu=0
python gradientset.py --model=wrn28-10 --m=./model/benign/benign-wrn28-10.pt --dataset=cifar10 --gpu=0

ImageNet:

python gradientset.py --model=resnet34-imgnet --m=./model/victim/vict-imgnet-resnet34.pt --dataset=imagenet --gpu=0
python gradientset.py --model=resnet18-imgnet --m=./model/victim/vict-imgnet-resnet18.pt --dataset=imagenet --gpu=0
python gradientset.py --model=resnet34-imgnet --m=./model/benign/benign-imgnet-resnet34.pt --dataset=imagenet --gpu=0
python gradientset.py --model=resnet18-imgnet --m=./model/benign/benign-imgnet-resnet18.pt --dataset=imagenet --gpu=0

Training Ownership Meta-Classifier

To train the ownership meta-classifier in the paper, run these commands:

CIFAR-10:

python train_clf.py --type=wrn28-10 --dataset=cifar10 --gpu=0
python train_clf.py --type=wrn16-1 --dataset=cifar10 --gpu=0

ImageNet:

python train_clf.py --type=resnet34-imgnet --dataset=imagenet --gpu=0
python train_clf.py --type=resnet18-imgnet --dataset=imagenet --gpu=0

Ownership Verification

To verify the ownership of the suspicious models, run this command:

CIFAR-10:

python ownership_verification.py --mode=source --dataset=cifar10 --gpu=0 

#mode: ['source','distillation','zero-shot','fine-tune','label-query','logit-query','benign']

ImageNet:

python ownership_verification.py --mode=logit-query --dataset=imagenet --gpu=0 

#mode: ['source','distillation','zero-shot','fine-tune','label-query','logit-query','benign']

An Example of the Result

python ownership_verification.py --mode=fine-tune --dataset=cifar10 --gpu=0 

result:  p-val: 1.9594572166549425e-08 mu: 0.47074130177497864

Reference

If our work or this repo is useful for your research, please cite our paper as follows:

@inproceedings{li2022defending,
  title={Defending against Model Stealing via Verifying Embedded External Features},
  author={Li, Yiming and Zhu, Linghui and Jia, Xiaojun and Jiang, Yong and Xia, Shu-Tao and Cao, Xiaochun},
  booktitle={AAAI},
  year={2022}
}
RLMeta is a light-weight flexible framework for Distributed Reinforcement Learning Research.

RLMeta rlmeta - a flexible lightweight research framework for Distributed Reinforcement Learning based on PyTorch and moolib Installation To build fro

Meta Research 281 Dec 22, 2022
Implementation of Barlow Twins paper

barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in

IgorSusmelj 86 Dec 20, 2022
Supplementary code for TISMIR paper "Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form"

Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form This is supplementary code for the TISMIR paper Sliding-Window Pitch-Class H

1 Nov 27, 2021
Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project

Semantic Code Search Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project. The model

Chen Wu 24 Nov 29, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion" Coming soon, as soon as I finish a

Ziyao Zeng 14 Feb 26, 2022
Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks

Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks - Official Project Page This repository contains the code develope

Amirsina Torfi 1.7k Dec 18, 2022
A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

Biomedical Computer Vision @ Uniandes 52 Dec 19, 2022
We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.

Auto-exposure fusion for single-image shadow removal We propose a new method for effective shadow removal by regarding it as an exposure fusion proble

Qing Guo 146 Dec 31, 2022
Collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

The repository collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

Jun Chen 139 Dec 21, 2022
🔪 Elimination based Lightweight Neural Net with Pretrained Weights

ELimNet ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task Removed top layers from pretrained Efficient

snoop2head 4 Jul 12, 2022
Real-time pose estimation accelerated with NVIDIA TensorRT

trt_pose Want to detect hand poses? Check out the new trt_pose_hand project for real-time hand pose and gesture recognition! trt_pose is aimed at enab

NVIDIA AI IOT 803 Jan 06, 2023
BASH - Biomechanical Animated Skinned Human

We developed a method animating a statistical 3D human model for biomechanical analysis to increase accessibility for non-experts, like patients, athletes, or designers.

Machine Learning and Data Analytics Lab FAU 66 Nov 19, 2022
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".

nvdiffrec Joint optimization of topology, materials and lighting from multi-view image observations as described in the paper Extracting Triangular 3D

NVIDIA Research Projects 1.4k Jan 01, 2023
SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

Wentao Zhu 24 May 20, 2022
Implementation of Artificial Neural Network Algorithm

Artificial Neural Network This repository contain implementation of Artificial Neural Network Algorithm in several programming languanges and framewor

Resha Dwika Hefni Al-Fahsi 1 Sep 14, 2022
PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identification in Symbolic Scores.

Symbolic Melody Identification This repository is an unofficial PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identifica

Sophia Y. Chou 3 Feb 21, 2022
Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Sami BARCHID 2 Oct 20, 2022
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch

Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab

ixaxaar 302 Dec 14, 2022
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022