Defending against Model Stealing via Verifying Embedded External Features

Overview

Defending against Model Stealing Attacks via Verifying Embedded External Features

This is the official implementation of our paper Defending against Model Stealing Attacks via Verifying Embedded External Features, accepted by the AAAI Conference on Artificial Intelligence (AAAI), 2022. This research project is developed based on Python 3 and Pytorch, created by Yiming Li and Linghui Zhu.

Pipeline

Pipeline

Requirements

To install requirements:

pip install -r requirements.txt

Make sure the directory follows:

stealingverification
├── data
│   ├── cifar10
│   └── ...
├── gradients_set 
│   
├── prob
│   
├── network
│   
├── model
│   ├── victim
│   └── ...
|

Dataset Preparation

Make sure the directory data follows:

data
├── cifar10_seurat_10%
|   ├── train
│   └── test
├── cifar10  
│   ├── train
│   └── test
├── subimage_seurat_10%
│   ├── train
|   ├── val
│   └── test
├── sub-imagenet-20
│   ├── train
|   ├── val
│   └── test

📋 Data Download Link:
data

Model Preparation

Make sure the directory model follows:

model
├── victim
│   ├── vict-wrn28-10.pt
│   └── ...
├── benign
│   ├── benign-wrn28-10.pt
│   └── ...
├── attack
│   ├── atta-label-wrn16-1.pt
│   └── ...
└── clf

📋 Model Download Link:
model

Collecting Gradient Vectors

Collect gradient vectors of victim and benign model with respect to transformed images.

CIFAR-10:

python gradientset.py --model=wrn16-1 --m=./model/victim/vict-wrn16-1.pt --dataset=cifar10 --gpu=0
python gradientset.py --model=wrn28-10 --m=./model/victim/vict-wrn28-10.pt --dataset=cifar10 --gpu=0
python gradientset.py --model=wrn16-1 --m=./model/benign/benign-wrn16-1.pt --dataset=cifar10 --gpu=0
python gradientset.py --model=wrn28-10 --m=./model/benign/benign-wrn28-10.pt --dataset=cifar10 --gpu=0

ImageNet:

python gradientset.py --model=resnet34-imgnet --m=./model/victim/vict-imgnet-resnet34.pt --dataset=imagenet --gpu=0
python gradientset.py --model=resnet18-imgnet --m=./model/victim/vict-imgnet-resnet18.pt --dataset=imagenet --gpu=0
python gradientset.py --model=resnet34-imgnet --m=./model/benign/benign-imgnet-resnet34.pt --dataset=imagenet --gpu=0
python gradientset.py --model=resnet18-imgnet --m=./model/benign/benign-imgnet-resnet18.pt --dataset=imagenet --gpu=0

Training Ownership Meta-Classifier

To train the ownership meta-classifier in the paper, run these commands:

CIFAR-10:

python train_clf.py --type=wrn28-10 --dataset=cifar10 --gpu=0
python train_clf.py --type=wrn16-1 --dataset=cifar10 --gpu=0

ImageNet:

python train_clf.py --type=resnet34-imgnet --dataset=imagenet --gpu=0
python train_clf.py --type=resnet18-imgnet --dataset=imagenet --gpu=0

Ownership Verification

To verify the ownership of the suspicious models, run this command:

CIFAR-10:

python ownership_verification.py --mode=source --dataset=cifar10 --gpu=0 

#mode: ['source','distillation','zero-shot','fine-tune','label-query','logit-query','benign']

ImageNet:

python ownership_verification.py --mode=logit-query --dataset=imagenet --gpu=0 

#mode: ['source','distillation','zero-shot','fine-tune','label-query','logit-query','benign']

An Example of the Result

python ownership_verification.py --mode=fine-tune --dataset=cifar10 --gpu=0 

result:  p-val: 1.9594572166549425e-08 mu: 0.47074130177497864

Reference

If our work or this repo is useful for your research, please cite our paper as follows:

@inproceedings{li2022defending,
  title={Defending against Model Stealing via Verifying Embedded External Features},
  author={Li, Yiming and Zhu, Linghui and Jia, Xiaojun and Jiang, Yong and Xia, Shu-Tao and Cao, Xiaochun},
  booktitle={AAAI},
  year={2022}
}
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022
DeepCAD: A Deep Generative Network for Computer-Aided Design Models

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Rundi Wu 85 Dec 31, 2022
Code for "R-GCN: The R Could Stand for Random"

RR-GCN: Random Relational Graph Convolutional Networks PyTorch Geometric code for the paper "R-GCN: The R Could Stand for Random" RR-GCN is an extensi

PreDiCT.IDLab 31 Sep 07, 2022
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
Exploring the link between uncertainty estimates obtained via "exact" Bayesian inference and out-of-distribution (OOD) detection.

Uncertainty-based OOD detection Exploring the link between uncertainty estimates obtained by "exact" Bayesian inference and out-of-distribution (OOD)

Christian Henning 1 Nov 05, 2022
PyTorch trainer and model for Sequence Classification

PyTorch-trainer-and-model-for-Sequence-Classification After cloning the repository, modify your training data so that the training data is a .csv file

NhanTieu 2 Dec 09, 2022
A generator of point clouds dataset for PyPipes.

CloudPipesGenerator Documentation | Colab Notebooks | Video Tutorials | Master Degree website A generator of point clouds dataset for PyPipes. TODO Us

1 Jan 13, 2022
git《Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser Abstract The success of deep denoisers on real-world colo

Yue Cao 51 Nov 22, 2022
Simple renderer for use with MuJoCo (>=2.1.2) Python Bindings.

Viewer for MuJoCo in Python Interactive renderer to use with the official Python bindings for MuJoCo. Starting with version 2.1.2, MuJoCo comes with n

Rohan P. Singh 62 Dec 30, 2022
This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports"

Introduction: X-Ray Report Generation This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports". O

no name 36 Dec 16, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
Machine learning notebooks in different subjects optimized to run in google collaboratory

Notebooks Name Description Category Link Training pix2pix This notebook shows a simple pipeline for training pix2pix on a simple dataset. Most of the

Zaid Alyafeai 363 Dec 06, 2022
Package for working with hypernetworks in PyTorch.

Package for working with hypernetworks in PyTorch.

Christian Henning 71 Jan 05, 2023
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
Image reconstruction done with untrained neural networks.

PyTorch Deep Image Prior An implementation of image reconstruction methods from Deep Image Prior (Ulyanov et al., 2017) in PyTorch. The point of the p

Atiyo Ghosh 192 Nov 30, 2022
The Ludii general game system, developed as part of the ERC-funded Digital Ludeme Project.

The Ludii General Game System Ludii is a general game system being developed as part of the ERC-funded Digital Ludeme Project (DLP). This repository h

Digital Ludeme Project 50 Jan 04, 2023
Adaout is a practical and flexible regularization method with high generalization and interpretability

Adaout Adaout is a practical and flexible regularization method with high generalization and interpretability. Requirements python 3.6 (Anaconda versi

lambett 1 Feb 09, 2022
Generating Digital Painting Lighting Effects via RGB-space Geometry (SIGGRAPH2020/TOG2020)

Project PaintingLight PaintingLight is a project conducted by the Style2Paints team, aimed at finding a method to manipulate the illumination in digit

651 Dec 29, 2022
Code for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"

Triple-cooperative Video Shadow Detection Code and dataset for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"[arXiv link] [official l

Zhihao Chen 24 Oct 04, 2022