Defending against Model Stealing via Verifying Embedded External Features

Overview

Defending against Model Stealing Attacks via Verifying Embedded External Features

This is the official implementation of our paper Defending against Model Stealing Attacks via Verifying Embedded External Features, accepted by the AAAI Conference on Artificial Intelligence (AAAI), 2022. This research project is developed based on Python 3 and Pytorch, created by Yiming Li and Linghui Zhu.

Pipeline

Pipeline

Requirements

To install requirements:

pip install -r requirements.txt

Make sure the directory follows:

stealingverification
├── data
│   ├── cifar10
│   └── ...
├── gradients_set 
│   
├── prob
│   
├── network
│   
├── model
│   ├── victim
│   └── ...
|

Dataset Preparation

Make sure the directory data follows:

data
├── cifar10_seurat_10%
|   ├── train
│   └── test
├── cifar10  
│   ├── train
│   └── test
├── subimage_seurat_10%
│   ├── train
|   ├── val
│   └── test
├── sub-imagenet-20
│   ├── train
|   ├── val
│   └── test

📋 Data Download Link:
data

Model Preparation

Make sure the directory model follows:

model
├── victim
│   ├── vict-wrn28-10.pt
│   └── ...
├── benign
│   ├── benign-wrn28-10.pt
│   └── ...
├── attack
│   ├── atta-label-wrn16-1.pt
│   └── ...
└── clf

📋 Model Download Link:
model

Collecting Gradient Vectors

Collect gradient vectors of victim and benign model with respect to transformed images.

CIFAR-10:

python gradientset.py --model=wrn16-1 --m=./model/victim/vict-wrn16-1.pt --dataset=cifar10 --gpu=0
python gradientset.py --model=wrn28-10 --m=./model/victim/vict-wrn28-10.pt --dataset=cifar10 --gpu=0
python gradientset.py --model=wrn16-1 --m=./model/benign/benign-wrn16-1.pt --dataset=cifar10 --gpu=0
python gradientset.py --model=wrn28-10 --m=./model/benign/benign-wrn28-10.pt --dataset=cifar10 --gpu=0

ImageNet:

python gradientset.py --model=resnet34-imgnet --m=./model/victim/vict-imgnet-resnet34.pt --dataset=imagenet --gpu=0
python gradientset.py --model=resnet18-imgnet --m=./model/victim/vict-imgnet-resnet18.pt --dataset=imagenet --gpu=0
python gradientset.py --model=resnet34-imgnet --m=./model/benign/benign-imgnet-resnet34.pt --dataset=imagenet --gpu=0
python gradientset.py --model=resnet18-imgnet --m=./model/benign/benign-imgnet-resnet18.pt --dataset=imagenet --gpu=0

Training Ownership Meta-Classifier

To train the ownership meta-classifier in the paper, run these commands:

CIFAR-10:

python train_clf.py --type=wrn28-10 --dataset=cifar10 --gpu=0
python train_clf.py --type=wrn16-1 --dataset=cifar10 --gpu=0

ImageNet:

python train_clf.py --type=resnet34-imgnet --dataset=imagenet --gpu=0
python train_clf.py --type=resnet18-imgnet --dataset=imagenet --gpu=0

Ownership Verification

To verify the ownership of the suspicious models, run this command:

CIFAR-10:

python ownership_verification.py --mode=source --dataset=cifar10 --gpu=0 

#mode: ['source','distillation','zero-shot','fine-tune','label-query','logit-query','benign']

ImageNet:

python ownership_verification.py --mode=logit-query --dataset=imagenet --gpu=0 

#mode: ['source','distillation','zero-shot','fine-tune','label-query','logit-query','benign']

An Example of the Result

python ownership_verification.py --mode=fine-tune --dataset=cifar10 --gpu=0 

result:  p-val: 1.9594572166549425e-08 mu: 0.47074130177497864

Reference

If our work or this repo is useful for your research, please cite our paper as follows:

@inproceedings{li2022defending,
  title={Defending against Model Stealing via Verifying Embedded External Features},
  author={Li, Yiming and Zhu, Linghui and Jia, Xiaojun and Jiang, Yong and Xia, Shu-Tao and Cao, Xiaochun},
  booktitle={AAAI},
  year={2022}
}
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages

DrRepair: Learning to Repair Programs from Error Messages This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program

Michihiro Yasunaga 155 Jan 08, 2023
JstDoS - HTTP Protocol Stack Remote Code Execution Vulnerability

jstDoS If you are going to skid that, please give credits ! ^^ ¿How works? This

apolo 4 Feb 11, 2022
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
A curated list of neural network pruning resources.

A curated list of neural network pruning and related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers and Awesome-NAS.

Yang He 1.7k Jan 09, 2023
Course materials for Fall 2021 "CIS6930 Topics in Computing for Data Science" at New College of Florida

Fall 2021 CIS6930 Topics in Computing for Data Science This repository hosts course materials used for a 13-week course "CIS6930 Topics in Computing f

Yoshi Suhara 101 Nov 30, 2022
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sandeep Subramanian 708 Dec 19, 2022
GemNet model in PyTorch, as proposed in "GemNet: Universal Directional Graph Neural Networks for Molecules" (NeurIPS 2021)

GemNet: Universal Directional Graph Neural Networks for Molecules Reference implementation in PyTorch of the geometric message passing neural network

Data Analytics and Machine Learning Group 124 Dec 30, 2022
Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer Description Convert offline handwritten mathematical expressi

Wenqi Zhao 87 Dec 27, 2022
PyTorch implementation of our CVPR2021 (oral) paper "Prototype Augmentation and Self-Supervision for Incremental Learning"

PASS - Official PyTorch Implementation [CVPR2021 Oral] Prototype Augmentation and Self-Supervision for Incremental Learning Fei Zhu, Xu-Yao Zhang, Chu

67 Dec 27, 2022
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Noah Getz 3 Jun 22, 2022
Baseline inference Algorithm for the STOIC2021 challenge.

STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme

Luuk Boulogne 10 Aug 08, 2022
Diagnostic tests for linguistic capacities in language models

LM diagnostics This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguist

61 Jan 02, 2023
Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows

Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows This is the official implementation of the ICCV 2021 Paper "Probabilistic Mono

62 Nov 23, 2022
Code release for SLIP Self-supervision meets Language-Image Pre-training

SLIP: Self-supervision meets Language-Image Pre-training What you can find in this repo: Pre-trained models (with ViT-Small, Base, Large) and code to

Meta Research 621 Dec 31, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
A plug-and-play library for neural networks written in Python

A plug-and-play library for neural networks written in Python!

Dimos Michailidis 2 Jul 16, 2022