Like Dirt-Samples, but cleaned up

Overview

Clean-Samples

Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the metadata for specifics).

The bin/meta.py python script is a reference implementation that can make a '.cleanmeta' metadata file for your own sample pack folder. See below for how to use it and contribute a sample pack of your own.

If you want to use these outside the Tidal/SuperDirt/SuperCollider ecosystem you are very welcome. You're encouraged to join discussion in the github issue tracker so that we can develop a standard way to share and index/signpost these packs.

See /tidalcycles/sounds-repetition for an example sample pack which has two sets of samples in it.

How to contribute a sample pack

Please only contribute samples if you are happy to share them under a permissive license such as CC0 or a similar creative commons license.

If you are unfamiliar with the 'git' software, please create an issue here, with a short description of your samples and a link to them and someone should be along to help shortly.

If you are familiar with git and running python scripts (or happy to learn), please follow the below instructions. This is all new - if anything is unclear please create an issue, thanks!

  1. Get your samples together in .wav format, editing them if necessary (see below for advice).

  2. Create a new repository. This isn't essential, but consider putting 'sounds-' in front of its name, e.g. 'sounds-303bass' for your 303 bass samples.

  3. Add your samples to the repository. For an example of how to organise them, see this sample pack: tidalcycles/sounds-repetition, which has two sets of samples, with a subfolder for each.

  4. Create a '.cleanmeta' metadata file for each subfolder. Again, see tidalcycles/sounds-repetition for examples. There is a python script bin/meta.py which can generate the metadata file for you, run it without parameters for help. Here is an example commandline, that was used to generate repetition.cleanmeta:

    ../Clean-Samples/bin/meta.py --maintainer alex --email [email protected] --copyright "(c) 2021 Alex McLean" --license CC0 --provenance "Various dodgy speech synths" --shortname repetition --sample-subfolder repetition/ --write .
    

    After generating the file, edit it with a text editor to fill in any missing info.

  5. When ready, add te URL of your repository to the https://github.com/tidalcycles/Clean-Samples/blob/main/Clean-Samples.quark for the Clean-Samples quark) in a pull request. You could also add it to the SuperCollider quarks database, or we can do that for you if you prefer, so that we can accept the PR to Clean-Samples once it's accepted as a quark.

Advice for preparing samples

You can use free/open source software like audacity for editing samples.

As a minimum, be sure to trim any silence from beginning/end of the samples, and that the start and end of the sample is at zero to avoid clicks (you might need to fade in / fade out by a tiny amount to achieve this).

Consider adjusting the volume/loudness too, for example normalising to -1.0db - but this is very subjective and will depend on the nature of the samples and the music they're used with. For example distorted gabba samples are intended to be very loud, and a whisper is intended to sound silent. The average non-percussive sample should be around -23dB RMS. Samples shouldn't exceed 0dB true peak. EBU recommends -1dBTP at 4x-oversampling. Samples generally shouldn't have DC offset, although e.g. some kick drum samples naturally have non-zero mean.

For more advice, you could join the discussion here.

Thanks!

Owner
TidalCycles
Live coding environment for making patterns
TidalCycles
This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation".

IR-GAIL This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation". Dependency The experiments are de

Zhao-Heng Yin 1 Jul 14, 2022
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023
Accelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.

Optimum Transformers Accelerated NLP pipelines for fast inference ๐Ÿš€ on CPU and GPU. Built with ๐Ÿค— Transformers, Optimum and ONNX runtime. Installatio

Aleksey Korshuk 115 Dec 16, 2022
Boosted neural network for tabular data

XBNet - Xtremely Boosted Network Boosted neural network for tabular data XBNet is an open source project which is built with PyTorch which tries to co

Tushar Sarkar 175 Jan 04, 2023
A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

195 Dec 07, 2022
Bootstrapped Unsupervised Sentence Representation Learning (ACL 2021)

Install first pip3 install -e . Training python3 training/unsupervised_tuning.py python3 training/supervised_tuning.py python3 training/multilingual_

yanzhang_nlp 26 Jul 22, 2022
PyTorch implementation of saliency map-aided GAN for Auto-demosaic+denosing

Saiency Map-aided GAN for RAW2RGB Mapping The PyTorch implementations and guideline for Saiency Map-aided GAN for RAW2RGB Mapping. 1 Implementations B

Yuzhi ZHAO 20 Oct 24, 2022
A library that can print Python objects in human readable format

objprint A library that can print Python objects in human readable format Install pip install objprint Usage op Use op() (or objprint()) to print obj

319 Dec 25, 2022
The VeriNet toolkit for verification of neural networks

VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.

9 Dec 21, 2022
Code-free deep segmentation for computational pathology

NoCodeSeg: Deep segmentation made easy! This is the official repository for the manuscript "Code-free development and deployment of deep segmentation

Andrรฉ Pedersen 26 Nov 23, 2022
A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).

GAM โ €โ € A PyTorch implementation of Graph Classification Using Structural Attention (KDD 2018). Abstract Graph classification is a problem with practic

Benedek Rozemberczki 259 Dec 05, 2022
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
Custom TensorFlow2 implementations of forward and backward computation of soft-DTW algorithm in batch mode.

Batch Soft-DTW(Dynamic Time Warping) in TensorFlow2 including forward and backward computation Custom TensorFlow2 implementations of forward and backw

19 Aug 30, 2022
Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

FL Analysis This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First L

3 Oct 17, 2022
Fast Differentiable Matrix Sqrt Root

Fast Differentiable Matrix Sqrt Root Geometric Interpretation of Matrix Square Root and Inverse Square Root This repository constains the official Pyt

YueSong 42 Dec 30, 2022
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
๊ณต๊ณต์žฅ์†Œ์—์„œ ๋ˆˆ๋งŒ ๋Œ๋ฆฌ๋ฉด CCTV๊ฐ€ ๋ณด์ธ๋‹ค๋Š” ๋ง์ด ๊ณผ์–ธ์ด ์•„๋‹ ์ •๋„๋กœ CCTV๊ฐ€ ์šฐ๋ฆฌ ์ƒํ™œ์— ๊นŠ์ˆ™์ด ์ž๋ฆฌ ์žก์•˜์Šต๋‹ˆ๋‹ค.

ObsCare_Main ์†Œ๊ฐœ ๊ณต๊ณต์žฅ์†Œ์—์„œ ๋ˆˆ๋งŒ ๋Œ๋ฆฌ๋ฉด CCTV๊ฐ€ ๋ณด์ธ๋‹ค๋Š” ๋ง์ด ๊ณผ์–ธ์ด ์•„๋‹ ์ •๋„๋กœ CCTV๊ฐ€ ์šฐ๋ฆฌ ์ƒํ™œ์— ๊นŠ์ˆ™์ด ์ž๋ฆฌ ์žก์•˜์Šต๋‹ˆ๋‹ค. CCTV์˜ ๋Œ€์ˆ˜๊ฐ€ ๊ธ‰๊ฒฉํžˆ ๋Š˜์–ด๋‚˜๋ฉด์„œ ๊ด€๋ฆฌ์™€ ํšจ์œจ์„ฑ ๋ฌธ์ œ์™€ ๋”๋ถˆ์–ด, ๊ณณ๊ณณ์— ์„ค์น˜๋œ CCTV๋ฅผ ๊ฐœ๋ณ„ ๊ด€์ œํ•˜๋Š” ๊ฒƒ์œผ๋กœ๋Š” ์‘๊ธ‰ ์ƒ

5 Jul 07, 2022
OneShot Learning-based hotword detection.

EfficientWord-Net Hotword detection based on one-shot learning Home assistants require special phrases called hotwords to get activated (eg:"ok google

ANT-BRaiN 102 Dec 25, 2022
Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN Project | Arxiv | CVF | Supplementary materials | Talk (ICCV`19) Official pytorch implementation of the paper: "SinGAN: Learning a Generative M

Tamar Rott Shaham 3.2k Dec 25, 2022