Like Dirt-Samples, but cleaned up

Overview

Clean-Samples

Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the metadata for specifics).

The bin/meta.py python script is a reference implementation that can make a '.cleanmeta' metadata file for your own sample pack folder. See below for how to use it and contribute a sample pack of your own.

If you want to use these outside the Tidal/SuperDirt/SuperCollider ecosystem you are very welcome. You're encouraged to join discussion in the github issue tracker so that we can develop a standard way to share and index/signpost these packs.

See /tidalcycles/sounds-repetition for an example sample pack which has two sets of samples in it.

How to contribute a sample pack

Please only contribute samples if you are happy to share them under a permissive license such as CC0 or a similar creative commons license.

If you are unfamiliar with the 'git' software, please create an issue here, with a short description of your samples and a link to them and someone should be along to help shortly.

If you are familiar with git and running python scripts (or happy to learn), please follow the below instructions. This is all new - if anything is unclear please create an issue, thanks!

  1. Get your samples together in .wav format, editing them if necessary (see below for advice).

  2. Create a new repository. This isn't essential, but consider putting 'sounds-' in front of its name, e.g. 'sounds-303bass' for your 303 bass samples.

  3. Add your samples to the repository. For an example of how to organise them, see this sample pack: tidalcycles/sounds-repetition, which has two sets of samples, with a subfolder for each.

  4. Create a '.cleanmeta' metadata file for each subfolder. Again, see tidalcycles/sounds-repetition for examples. There is a python script bin/meta.py which can generate the metadata file for you, run it without parameters for help. Here is an example commandline, that was used to generate repetition.cleanmeta:

    ../Clean-Samples/bin/meta.py --maintainer alex --email [email protected] --copyright "(c) 2021 Alex McLean" --license CC0 --provenance "Various dodgy speech synths" --shortname repetition --sample-subfolder repetition/ --write .
    

    After generating the file, edit it with a text editor to fill in any missing info.

  5. When ready, add te URL of your repository to the https://github.com/tidalcycles/Clean-Samples/blob/main/Clean-Samples.quark for the Clean-Samples quark) in a pull request. You could also add it to the SuperCollider quarks database, or we can do that for you if you prefer, so that we can accept the PR to Clean-Samples once it's accepted as a quark.

Advice for preparing samples

You can use free/open source software like audacity for editing samples.

As a minimum, be sure to trim any silence from beginning/end of the samples, and that the start and end of the sample is at zero to avoid clicks (you might need to fade in / fade out by a tiny amount to achieve this).

Consider adjusting the volume/loudness too, for example normalising to -1.0db - but this is very subjective and will depend on the nature of the samples and the music they're used with. For example distorted gabba samples are intended to be very loud, and a whisper is intended to sound silent. The average non-percussive sample should be around -23dB RMS. Samples shouldn't exceed 0dB true peak. EBU recommends -1dBTP at 4x-oversampling. Samples generally shouldn't have DC offset, although e.g. some kick drum samples naturally have non-zero mean.

For more advice, you could join the discussion here.

Thanks!

Owner
TidalCycles
Live coding environment for making patterns
TidalCycles
GrailQA: Strongly Generalizable Question Answering

GrailQA is a new large-scale, high-quality KBQA dataset with 64,331 questions annotated with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). It ca

OSU DKI Lab 76 Dec 21, 2022
Easy-to-use micro-wrappers for Gym and PettingZoo based RL Environments

SuperSuit introduces a collection of small functions which can wrap reinforcement learning environments to do preprocessing ('microwrappers'). We supp

Farama Foundation 357 Jan 06, 2023
2.86% and 15.85% on CIFAR-10 and CIFAR-100

Shake-Shake regularization This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake

Xavier Gastaldi 294 Nov 22, 2022
A template repository for submitting a job to the Slurm Cluster installed at the DISI - University of Bologna

Cluster di HPC con GPU per esperimenti di calcolo (draft version 1.0) Per poter utilizzare il cluster il primo passo è abilitare l'account istituziona

20 Dec 16, 2022
Python Jupyter kernel using Poetry for reproducible notebooks

Poetry Kernel Use per-directory Poetry environments to run Jupyter kernels. No need to install a Jupyter kernel per Python virtual environment! The id

Pathbird 204 Jan 04, 2023
Arbitrary Distribution Modeling with Censorship in Real Time 59 2 60 3 Bidding Advertising for KDD'21

Arbitrary_Distribution_Modeling This repo implements the Neighborhood Likelihood Loss (NLL) and Arbitrary Distribution Modeling (ADM, with Interacting

7 Jan 03, 2023
Time Series Cross-Validation -- an extension for scikit-learn

TSCV: Time Series Cross-Validation This repository is a scikit-learn extension for time series cross-validation. It introduces gaps between the traini

Wenjie Zheng 222 Jan 01, 2023
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

105 Dec 23, 2022
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
MassiveSumm: a very large-scale, very multilingual, news summarisation dataset

MassiveSumm: a very large-scale, very multilingual, news summarisation dataset This repository contains links to data and code to fetch and reproduce

Daniel Varab 19 Dec 16, 2022
Official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION.

IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION This is the official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSU

电线杆 14 Dec 15, 2022
Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can ! 🤡

Customers Segmentation using PHP and Rubix ML PHP Library Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can !

Mickaël Andrieu 11 Oct 08, 2022
An experimental technique for efficiently exploring neural architectures.

SMASH: One-Shot Model Architecture Search through HyperNetworks An experimental technique for efficiently exploring neural architectures. This reposit

Andy Brock 478 Aug 04, 2022
Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Graph Convolution Simulator (GCS) Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions" Requirements: PyTor

yifan 10 Oct 18, 2022
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

g-parki 7 Jul 15, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
A visualisation tool for Deep Reinforcement Learning

DRLVIS - Visualising Deep Reinforcement Learning Created by Marios Sirtmatsis with the support of Alex Bäuerle. DRLVis is an application used for visu

Marios Sirtmatsis 1 Nov 04, 2021