Like Dirt-Samples, but cleaned up

Overview

Clean-Samples

Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the metadata for specifics).

The bin/meta.py python script is a reference implementation that can make a '.cleanmeta' metadata file for your own sample pack folder. See below for how to use it and contribute a sample pack of your own.

If you want to use these outside the Tidal/SuperDirt/SuperCollider ecosystem you are very welcome. You're encouraged to join discussion in the github issue tracker so that we can develop a standard way to share and index/signpost these packs.

See /tidalcycles/sounds-repetition for an example sample pack which has two sets of samples in it.

How to contribute a sample pack

Please only contribute samples if you are happy to share them under a permissive license such as CC0 or a similar creative commons license.

If you are unfamiliar with the 'git' software, please create an issue here, with a short description of your samples and a link to them and someone should be along to help shortly.

If you are familiar with git and running python scripts (or happy to learn), please follow the below instructions. This is all new - if anything is unclear please create an issue, thanks!

  1. Get your samples together in .wav format, editing them if necessary (see below for advice).

  2. Create a new repository. This isn't essential, but consider putting 'sounds-' in front of its name, e.g. 'sounds-303bass' for your 303 bass samples.

  3. Add your samples to the repository. For an example of how to organise them, see this sample pack: tidalcycles/sounds-repetition, which has two sets of samples, with a subfolder for each.

  4. Create a '.cleanmeta' metadata file for each subfolder. Again, see tidalcycles/sounds-repetition for examples. There is a python script bin/meta.py which can generate the metadata file for you, run it without parameters for help. Here is an example commandline, that was used to generate repetition.cleanmeta:

    ../Clean-Samples/bin/meta.py --maintainer alex --email [email protected] --copyright "(c) 2021 Alex McLean" --license CC0 --provenance "Various dodgy speech synths" --shortname repetition --sample-subfolder repetition/ --write .
    

    After generating the file, edit it with a text editor to fill in any missing info.

  5. When ready, add te URL of your repository to the https://github.com/tidalcycles/Clean-Samples/blob/main/Clean-Samples.quark for the Clean-Samples quark) in a pull request. You could also add it to the SuperCollider quarks database, or we can do that for you if you prefer, so that we can accept the PR to Clean-Samples once it's accepted as a quark.

Advice for preparing samples

You can use free/open source software like audacity for editing samples.

As a minimum, be sure to trim any silence from beginning/end of the samples, and that the start and end of the sample is at zero to avoid clicks (you might need to fade in / fade out by a tiny amount to achieve this).

Consider adjusting the volume/loudness too, for example normalising to -1.0db - but this is very subjective and will depend on the nature of the samples and the music they're used with. For example distorted gabba samples are intended to be very loud, and a whisper is intended to sound silent. The average non-percussive sample should be around -23dB RMS. Samples shouldn't exceed 0dB true peak. EBU recommends -1dBTP at 4x-oversampling. Samples generally shouldn't have DC offset, although e.g. some kick drum samples naturally have non-zero mean.

For more advice, you could join the discussion here.

Thanks!

Owner
TidalCycles
Live coding environment for making patterns
TidalCycles
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

11 Nov 29, 2022
MMFlow is an open source optical flow toolbox based on PyTorch

Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part

OpenMMLab 688 Jan 06, 2023
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
GANTheftAuto is a fork of the Nvidia's GameGAN

Description GANTheftAuto is a fork of the Nvidia's GameGAN, which is research focused on emulating dynamic game environments. The early research done

Harrison 801 Dec 27, 2022
A Traffic Sign Recognition Project which can help the driver recognise the signs via text as well as audio. Can be used at Night also.

Traffic-Sign-Recognition In this report, we propose a Convolutional Neural Network(CNN) for traffic sign classification that achieves outstanding perf

Mini Project 64 Nov 19, 2022
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022
Deep Ensemble Learning with Jet-Like architecture

Ransomware analysis using DEL with jet-like architecture comprising two CNN wings, a sparse AE tail, a non-linear PCA to produce a diverse feature space, and an MLP nose

Ahsen Nazir 2 Feb 06, 2022
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

260 Jan 03, 2023
YolactEdge: Real-time Instance Segmentation on the Edge

YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7

Haotian Liu 1.1k Jan 06, 2023
Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on

Zhiliang Peng 2.3k Jan 04, 2023
[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi

Kaidi Cao 528 Jan 01, 2023
Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

41 Jan 04, 2023
Look Who’s Talking: Active Speaker Detection in the Wild

Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg

Clova AI Research 60 Dec 08, 2022
Clustering is a popular approach to detect patterns in unlabeled data

Visual Clustering Clustering is a popular approach to detect patterns in unlabeled data. Existing clustering methods typically treat samples in a data

Tarek Naous 24 Nov 11, 2022
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021). RTS3D is efficiency and accuracy s

71 Nov 29, 2022