Like Dirt-Samples, but cleaned up

Overview

Clean-Samples

Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the metadata for specifics).

The bin/meta.py python script is a reference implementation that can make a '.cleanmeta' metadata file for your own sample pack folder. See below for how to use it and contribute a sample pack of your own.

If you want to use these outside the Tidal/SuperDirt/SuperCollider ecosystem you are very welcome. You're encouraged to join discussion in the github issue tracker so that we can develop a standard way to share and index/signpost these packs.

See /tidalcycles/sounds-repetition for an example sample pack which has two sets of samples in it.

How to contribute a sample pack

Please only contribute samples if you are happy to share them under a permissive license such as CC0 or a similar creative commons license.

If you are unfamiliar with the 'git' software, please create an issue here, with a short description of your samples and a link to them and someone should be along to help shortly.

If you are familiar with git and running python scripts (or happy to learn), please follow the below instructions. This is all new - if anything is unclear please create an issue, thanks!

  1. Get your samples together in .wav format, editing them if necessary (see below for advice).

  2. Create a new repository. This isn't essential, but consider putting 'sounds-' in front of its name, e.g. 'sounds-303bass' for your 303 bass samples.

  3. Add your samples to the repository. For an example of how to organise them, see this sample pack: tidalcycles/sounds-repetition, which has two sets of samples, with a subfolder for each.

  4. Create a '.cleanmeta' metadata file for each subfolder. Again, see tidalcycles/sounds-repetition for examples. There is a python script bin/meta.py which can generate the metadata file for you, run it without parameters for help. Here is an example commandline, that was used to generate repetition.cleanmeta:

    ../Clean-Samples/bin/meta.py --maintainer alex --email [email protected] --copyright "(c) 2021 Alex McLean" --license CC0 --provenance "Various dodgy speech synths" --shortname repetition --sample-subfolder repetition/ --write .
    

    After generating the file, edit it with a text editor to fill in any missing info.

  5. When ready, add te URL of your repository to the https://github.com/tidalcycles/Clean-Samples/blob/main/Clean-Samples.quark for the Clean-Samples quark) in a pull request. You could also add it to the SuperCollider quarks database, or we can do that for you if you prefer, so that we can accept the PR to Clean-Samples once it's accepted as a quark.

Advice for preparing samples

You can use free/open source software like audacity for editing samples.

As a minimum, be sure to trim any silence from beginning/end of the samples, and that the start and end of the sample is at zero to avoid clicks (you might need to fade in / fade out by a tiny amount to achieve this).

Consider adjusting the volume/loudness too, for example normalising to -1.0db - but this is very subjective and will depend on the nature of the samples and the music they're used with. For example distorted gabba samples are intended to be very loud, and a whisper is intended to sound silent. The average non-percussive sample should be around -23dB RMS. Samples shouldn't exceed 0dB true peak. EBU recommends -1dBTP at 4x-oversampling. Samples generally shouldn't have DC offset, although e.g. some kick drum samples naturally have non-zero mean.

For more advice, you could join the discussion here.

Thanks!

Owner
TidalCycles
Live coding environment for making patterns
TidalCycles
A PyTorch-centric hybrid classical-quantum machine learning framework

torchquantum A PyTorch-centric hybrid classical-quantum dynamic neural networks framework. News Add a simple example script using quantum gates to do

MIT HAN Lab 400 Jan 02, 2023
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
TyXe: Pyro-based BNNs for Pytorch users

TyXe: Pyro-based BNNs for Pytorch users TyXe aims to simplify the process of turning Pytorch neural networks into Bayesian neural networks by leveragi

87 Jan 03, 2023
Deep Crop Rotation

Deep Crop Rotation Paper (to come very soon!) We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classi

Félix Quinton 5 Sep 23, 2022
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

35 Nov 25, 2022
Code for the CVPR2021 workshop paper "Noise Conditional Flow Model for Learning the Super-Resolution Space"

NCSR: Noise Conditional Flow Model for Learning the Super-Resolution Space Official NCSR training PyTorch Code for the CVPR2021 workshop paper "Noise

57 Oct 03, 2022
A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor

Phase-SLAM A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor This open source is written by MATLAB Run Mode Open

Xi Zheng 14 Dec 19, 2022
CIFAR-10 Photo Classification

Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand

ADITYA SHAH 1 Jan 05, 2022
Nest Protect integration for Home Assistant. This will allow you to integrate your smoke, heat, co and occupancy status real-time in HA.

Nest Protect integration for Home Assistant Custom component for Home Assistant to interact with Nest Protect devices via an undocumented and unoffici

Mick Vleeshouwer 175 Dec 29, 2022
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

Jayson Reis 94 Nov 21, 2022
StyleMapGAN - Official PyTorch Implementation

StyleMapGAN - Official PyTorch Implementation StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing Hyunsu Kim, Yunj

NAVER AI 425 Dec 23, 2022
Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification

Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification Usage The required packages are lis

0 Feb 07, 2022
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
Springer Link Download Module for Python

♞ pupalink A simple Python module to search and download books from SpringerLink. 🧪 This project is still in an early stage of development. Expect br

Pupa Corp. 18 Nov 21, 2022
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

CVSM Group - email: <a href=[email protected]"> 377 Jan 07, 2023
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
Code/data of the paper "Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction" (BMVC2021)

Hand-Object Contact Prediction (BMVC2021) This repository contains the code and data for the paper "Hand-Object Contact Prediction via Motion-Based Ps

Takuma Yagi 13 Nov 07, 2022
Code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation

PiecewiseLinearTimeSeriesApproximation code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation, SIAM Data Mining 20

Daniel Lemire 21 Oct 27, 2022