Betafold - AlphaFold with tunings

Related tags

Deep Learningbetafold
Overview

alphafold.hegelab.org

BetaFold

We (hegelab.org) craeted this standalone AlphaFold (AlphaFold-Multimer, v2.1.1) fork with changes that most likely will not be inserted in the main repository, but we found these modifications very useful during our daily work. We plan to try to push these changes gradually to main repo via our alphafold fork.

Warning

  • Currently, this is a no-Docker version. If you really need our functionalities inside a Docker Image, let us know.
  • Earlier opction for the configuration file was -c, now it is -C.

Changes / Features

  • It is called BetaFold, since there might be some minor bugs – we provide this code “as is”.
  • This fork includes the correction of memory issues from our alphafold fork (listed below).
  • The changes mostly affect the workflow logic.
  • BetaFold run can be influence via configuration files.
  • Different steps of AF2 runs (generating features; running models; performing relaxation) can be separated. Thus database searches can run on a CPU node, while model running can be performed on a GPU node. Note: timings.json file is overwritten upon consecutive partial runs – save it if you need it.

Configuration file

  • You can provide the configuration file as: ‘run_alphafold.sh ARGUMENTS -C CONF_FILENAME’ (slightly modified version of the bash script from AlfaFold without docker @ kalininalab; please see below our Requirement section)
  • If no configuration file or no section or no option is provided, everything is expected to run everything with the original default parameters.
[steps]
get_features = true
run_models = true
run_relax = true

[relax]
top

Requirements

Paper/Reference/Citation

Till we publish a methodological paper, please read and cite our preprint "AlphaFold2 transmembrane protein structure prediction shines".

Memory issues you may encounter when running original AlphaFold locally

"Out of Memory"

This is expected to be included in the next AF2 release, see: pull request #296.

Brief, somewhat outdated summary: Some of our AF2 runs with short sequences (~250 a.a.) consumed all of our memory (96GB) and died. Our targets in these cases were highly conserved and produced a very large alignment file, which is read into the memory by a simple .read() in alphafold/data/tools/jackhmmer.py _query_chunk. Importantly, the max_hit limit is applied at a later step to the full set, which resides already in the memory, so this option does not prevent this error.

  • To overcome this issue exhausting the system RAM, we read the .sto file line-by-line, so only max_hit will reach the memory.
  • Since the same data needed line-by-line for a3m conversion, we merged the two step together. We inserted to functions into alphafold/data/parsers.py: get_sto if only sto is needed and get_sto_a3m if also a3m is needed (the code is somewhat redundant but simple and clean).
  • This issue was caused by jackhmmer_uniref90_runner.query and jackhmmer_mgnify_runner.query, so we modified the calls to this function in alphafold/data/pipeline.py.
  • The called query in alphafold/data/tools/jackhmmer.py calls _query_chunk; from here we call our get_sto*; _query_chunk returns the raw_output dictionary, which also includes 'a3m' as a string or None.

License and Disclaimer

Please see the original.

Flexible time series feature extraction & processing

tsflex is a toolkit for flexible time series processing & feature extraction, that is efficient and makes few assumptions about sequence data. Useful

PreDiCT.IDLab 206 Dec 28, 2022
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022
Official implementation for (Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching, AAAI-2021)

Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching Official pytorch implementation of "Show, Attend and Distill: Kn

Clova AI Research 80 Dec 16, 2022
Blender scripts for computing geodesic distance

GeoDoodle Geodesic distance computation for Blender meshes Table of Contents Overivew Usage Implementation Overview This addon provides an operator fo

20 Jun 08, 2022
Fully Convolutional DenseNets for semantic segmentation.

Introduction This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional Dense

485 Nov 26, 2022
An automated facial recognition based attendance system (desktop application)

Facial_Recognition_based_Attendance_System An automated facial recognition based attendance system (desktop application) Made using Python, Tkinter an

1 Jun 21, 2022
Implementation of the Chamfer Distance as a module for pyTorch

Chamfer Distance for pyTorch This is an implementation of the Chamfer Distance as a module for pyTorch. It is written as a custom C++/CUDA extension.

Christian Diller 205 Jan 05, 2023
Decorator for PyMC3

sampled Decorator for reusable models in PyMC3 Provides syntactic sugar for reusable models with PyMC3. This lets you separate creating a generative m

Colin 50 Oct 08, 2021
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Neural Circuit Policies Enabling Auditable Autonomy Online access via SharedIt Neural Circuit Policies (NCPs) are designed sparse recurrent neural net

8 Jan 07, 2023
The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021) Arash Vahdat*   ·   Karsten Kreis*   ·  

NVIDIA Research Projects 238 Jan 02, 2023
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention

AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil

3.4k Jan 07, 2023
CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer

CycleTransGAN-EVC CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer Demo emotion CycleTransGAN CycleTransGAN Cycle

24 Dec 15, 2022
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website • Colab • Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
Any-to-any voice conversion using synthetic specific-speaker speeches as intermedium features

MediumVC MediumVC is an utterance-level method towards any-to-any VC. Before that, we propose SingleVC to perform A2O tasks(Xi → Ŷi) , Xi means utter

谷下雨 47 Dec 25, 2022
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P

Photogrammetry & Robotics Bonn 314 Dec 30, 2022
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Facebook Research 296 Dec 29, 2022
A Python type explainer!

typesplainer A Python typehint explainer! Available as a cli, as a website, as a vscode extension, as a vim extension Usage First, install the package

Typesplainer 79 Dec 01, 2022
Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala, S. Krastanov, M. Eichenfield, and D. R. Englund, 2022

Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala,

Stefan Krastanov 1 Jan 17, 2022