Research on controller area network Intrusion Detection Systems

Overview

Group members information

Member 1: Lixue Liang

Member 2: Yuet Lee Chan

Member 3: Xinruo Zhang

Member 4: Yifei Han

User Manual

Generate Attack Packets

  1. To generate Dos attack packets, run ‘python3.8 Dos_SameIDSameFrameLength(Dos).py’.
  2. To generate Fuzzy attack packets, run ‘python3.8 Format_RandomLog_Generator(Fuzzy).py’.
  3. To generate Spoofing attack packets, run ‘python3.8 spoofing.py’

Generate Normal CAN Bus traffic on a virtual interface

  1. Open a terminal, run ‘python3.8 setup.py’ to set up the SocketCAN interface and ready for sending CAN Bus traffic. Modify the filenames inside the file before use. If there is ‘0x’ before the ID in a normal traffic CSV file, run ‘python3.8 preprocess_traffic.py’ before setting up the normal traffic.

Generate Attack CAN Bus traffic on a selected virtual interface

  1. To generate the attack traffic, open a new terminal(s), run ‘python3.8 attack.py’, and follow the instructions.

Capture traffic by Wireshark and Format the exported CSV file

  1. After running setup.py, before starting any traffic, open a terminal, run ‘sudo wireshark’ to capture packets. The Wireshark must run as administrator, otherwise, the virtual interface won’t show.
  2. Export collected traffic to a CSV file from Wireshark.
  3. Run ‘python3.8 format_wireshark.py’ to format the exported CSV file. Modify the filenames inside the file before use.
  4. Run ‘python3.8 MarkType.py’ to mark the normal traffic and attack traffic.

Traffic Visualization

  1. Run ‘python3.8 MatPlot.py’ to view the plot diagram and bar diagram of the selected CAN ID.

Data Processing and ID3 Model Training & Testing

  1. Run ‘python3.8 ids_data_processing.py’ to convert ID and data fields from hexadecimal to decimal, and combine data fields into one column.
  2. Run ‘ID3_model.ipynb’ to train and test the accuracy of the model.

Check outliers

  1. Import the attack csv file into folder
  2. Run 'outliers.R' to mark the 1 and 0 in a new colunm and generate a new csv file.
Owner
Roche
Roche
Llvlir - Low Level Variable Length Intermediate Representation

Low Level Variable Length Intermediate Representation Low Level Variable Length

Michael Clark 2 Jan 24, 2022
Histology images query (unsupervised)

110-1-NTU-DBME5028-Histology-images-query Final Project: Histology images query (unsupervised) Kaggle: https://www.kaggle.com/c/histology-images-query

1 Jan 05, 2022
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs We are trying hard to update the code, but it may take a while to complete due to our tight schedule rec

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
The code from the paper Character Transformations for Non-Autoregressive GEC Tagging

Character Transformations for Non-Autoregressive GEC Tagging Milan Straka, Jakub Náplava, Jana Straková Charles University Faculty of Mathematics and

ÚFAL 5 Dec 10, 2022
GAN-generated image detection based on CNNs

GAN-image-detection This repository contains a GAN-generated image detector developed to distinguish real images from synthetic ones. The detector is

Image and Sound Processing Lab 17 Dec 15, 2022
Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks

CyGNet This repository reproduces the AAAI'21 paper “Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Network

CunchaoZ 89 Jan 03, 2023
Conditional Generative Adversarial Networks (CGAN) for Mobility Data Fusion

This code implements the paper, Kim et al. (2021). Imputing Qualitative Attributes for Trip Chains Extracted from Smart Card Data Using a Conditional Generative Adversarial Network. Transportation Re

Eui-Jin Kim 2 Feb 03, 2022
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023
Hummingbird compiles trained ML models into tensor computation for faster inference.

Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se

Microsoft 3.1k Dec 30, 2022
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022
Visual Memorability for Robotic Interestingness via Unsupervised Online Learning (ECCV 2020 Oral and TRO)

Visual Interestingness Refer to the project description for more details. This code based on the following paper. Chen Wang, Yuheng Qiu, Wenshan Wang,

Chen Wang 36 Sep 08, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

Linyi Jin 89 Jan 05, 2023
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Benjamin Biggs 29 Dec 28, 2022
Ladder Variational Autoencoders (LVAE) in PyTorch

Ladder Variational Autoencoders (LVAE) PyTorch implementation of Ladder Variational Autoencoders (LVAE) [1]: where the variational distributions q at

Andrea Dittadi 63 Dec 22, 2022
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
A minimalist environment for decision-making in autonomous driving

highway-env A collection of environments for autonomous driving and tactical decision-making tasks An episode of one of the environments available in

Edouard Leurent 1.6k Jan 07, 2023
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
Attention-guided gan for synthesizing IR images

SI-AGAN Attention-guided gan for synthesizing IR images This repository contains the Tensorflow code for "Pedestrian Gender Recognition by Style Trans

1 Oct 25, 2021