Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Overview

SweepContractor.jl

A Julia package for the contraction of tensor networks using the sweep-line-based contraction algorithm laid out in the paper General tensor network decoding of 2D Pauli codes. This algorithm is primarily designed for two-dimensional tensor networks but contains graph manipulation tools that allow it to function for generic tensor networks.

Sweep-line anim

Below I have provided some examples of SweepContractor.jl at work. Scripts with working versions of each of these examples are also included in the package. For more detailed documentation consult help pages by using ? in the Julia REPL.

Feel free to contact me with any comments, questions, or suggestions at [email protected]. If you use SweepContractor.jl for research, please cite either arXiv:2101.04125 and/or doi:10.5281/zenodo.5566841.

Example 1: ABCD

Consider the following four tensor networks, taken from the tensor network review Hand-waving and Interpretive Dance:

ABCD1,

where each tensor is defined

ABCD2

First we need to install SweepContract.jl, which we do by running

import Pkg
Pkg.add("SweepContractor")

Now that it's installed we can use the package by running

using SweepContractor

Next we need to define our network. We do this by initialising a LabelledTensorNetwork, which allows us to have a tensor network with elements labelled by an arbitrary type, in our case Char.

LTN = LabelledTensorNetwork{Char}()

Next, we populate this with our four tensors, which are each specified by giving a list of neighbouring tensors, an array consisting of the entries, and a two-dimensional location.

LTN['A'] = Tensor(['D','B'], [i^2-2j for i=0:2, j=0:2], 0, 1)
LTN['B'] = Tensor(['A','D','C'], [-3^i*j+k for i=0:2, j=0:2, k=0:2], 0, 0)
LTN['C'] = Tensor(['B','D'], [j for i=0:2, j=0:2], 1, 0)
LTN['D'] = Tensor(['A','B','C'], [i*j*k for i=0:2, j=0:2, k=0:2], 1, 1)

Finally, we want to contract this network. To do this we need to specify a target bond dimension and a maximum bond-dimension. In our case, we will use 2 and 4.

value = sweep_contract(LTN,2,4)

To avoid underflows or overflows in the case of large networks sweep_contract does not simply return a float, but returns (f::Float64,i::Int64), which represents a valuef*2^i. In this case, it returns (1.0546875, 10). By running ldexp(sweep...) we can see that this corresponds to the exact value of the network of 1080.

Note there are two speedups that can be made to this code. Firstly, sweep_contract copies the input tensor network, so we can use the form sweep_contract! which allows the function to modify the input tensor network, skipping this copy step. Secondly, sweep_contract is designed to function on arbitrary tensor networks, and starts by flattening the network down into two dimensions. If our network is already well-structured, we can run the contraction in fast mode skipping these steps.

value = sweep_contract!(LTN,2,4; fast=true)

Examples 2: 2d grid (open)

Next, we move on to the sort of network this code was primarily designed for, a two-dimensional network. Here consider an square grid network of linear size L, with each index of dimension d. For convenience, we can once again use a LabelledTensorNetwork, with labels in this case corresponding to coordinates in the grid. To construct such a network with Gaussian random entries we can use code such as:

LTN = LabelledTensorNetwork{Tuple{Int,Int}}();
for i1:L, j1:L
    adj=Tuple{Int,Int}[];
    i>1 && push!(adj,(i-1,j))
    j>1 && push!(adj,(i,j-1))
    i<L && push!(adj,(i+1,j))
    j<L && push!(adj,(i,j+1))
    LTN[i,j] = Tensor(adj, randn(d*ones(Int,length(adj))...), i, j)
end

We note that the if statements used have the function of imposing open boundary conditions. Once again we can now contract this by running the sweep contractor (in fast mode), for some choice of bond-dimensions χ and τ:

value = sweep_contract!(LTN,χ,τ; fast=true)

Example 3: 2d grid (periodic)

But what about contracting a 2d grid with periodic boundary conditions? Well, this contains a small number of long-range bonds. Thankfully, however SweepContractor.jl can run on such graphs by first planarising them.

We might start by taking the above code and directly changing the boundary conditions, but this will result in the boundary edges overlapping other edges in the network (e.g. the edge from (1,1) to (2,1) will overlap the edge from (1,1) to (L,1)), which the contractor cannot deal with. As a crude workaround we just randomly shift the position of each tensor by a small amount:

LTN = LabelledTensorNetwork{Tuple{Int,Int}}();
for i1:L, j1:L
    adj=[
        (mod1(i-1,L),mod1(j,L)),
        (mod1(i+1,L),mod1(j,L)),
        (mod1(i,L),mod1(j-1,L)),
        (mod1(i,L),mod1(j+1,L))
    ]
    LTN[i,j] = Tensor(adj, randn(d,d,d,d), i+0.1*rand(), j+0.1*rand())
end

Here the mod1 function is imposing our periodic boundary condition, and rand() is being used to slightly move each tensor. Once again we can now run sweep_contract on this, but cannot use fast-mode as the network is no longer planar:

value = sweep_contract!(LTN,χ,τ)

Example 4: 3d lattice

If we can impose periodic boundary conditions, can we go further away from 2D? How about 3D? We sure can! For this we can just add another dimension to the above construction for a 2d grid:

LTN = LabelledTensorNetwork{Tuple{Int,Int,Int}}();
for i1:L, j1:L, k1:L
    adj=Tuple{Int,Int,Int}[];
    i>1 && push!(adj,(i-1,j,k))
    i<L && push!(adj,(i+1,j,k))
    j>1 && push!(adj,(i,j-1,k))
    j<L && push!(adj,(i,j+1,k))
    k>1 && push!(adj,(i,j,k-1))
    k<L && push!(adj,(i,j,k+1))
    LTN[i,j,k] = Tensor(
        adj,
        randn(d*ones(Int,length(adj))...),
        i+0.01*randn(),
        j+0.01*randn()
    )
end

value = sweep_contract!(LTN,χ,τ)

Example 5: Complete network

So how far can we go away from two-dimensional? The further we stray away from two-dimensional the more inefficient the contraction will be, but for small examples arbitrary connectivity is permissible. The extreme example is a completely connected network of n tensors:

TN=TensorNetwork(undef,n);
for i=1:n
    TN[i]=Tensor(
        setdiff(1:n,i),
        randn(d*ones(Int,n-1)...),
        randn(),
        randn()
    )
end

value = sweep_contract!(LTN,χ,τ)

Here we have used a TensorNetwork instead of a LabelledTensorNetwork. In a LabelledTensorNetwork each tensor can be labelled by an arbitrary type, which is accomplished by storing the network as a dictionary, which can incur significant overheads. TensorNetwork is built using vectors, which each label now needs to be labelled by an integer 1 to n, but can be significantly faster. While less flexible, TensorNetwork should be preferred in performance-sensitive settings.

You might also like...
 Pretty Tensor - Fluent Neural Networks in TensorFlow
Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

Comments
  • Restructure code base and depend on DataStructures rather than copying code.

    Restructure code base and depend on DataStructures rather than copying code.

    • Organize some files in subdirectories
    • SweepContractor.jl uses a data structure copied and modified from DataStructures.jl. This PR minimizes the number of files copied and instead depends as much as possible on DataStructures.jl
    • Creates a test suite with a few tests taken from the examples.
    opened by jlapeyre 0
Releases(v0.1.7)
Owner
Christopher T. Chubb
Christopher T. Chubb
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Multimedia Research 484 Dec 29, 2022
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

Arun 92 Dec 03, 2022
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
This repository contains the implementation of the following paper: Cross-Descriptor Visual Localization and Mapping

Cross-Descriptor Visual Localization and Mapping This repository contains the implementation of the following paper: "Cross-Descriptor Visual Localiza

Mihai Dusmanu 81 Oct 06, 2022
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022
A toy compiler that can convert Python scripts to pickle bytecode 🥒

Pickora 🐰 A small compiler that can convert Python scripts to pickle bytecode. Requirements Python 3.8+ No third-party modules are required. Usage us

ꌗᖘ꒒ꀤ꓄꒒ꀤꈤꍟ 68 Jan 04, 2023
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
PyTorch3D is FAIR's library of reusable components for deep learning with 3D data

Introduction PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch. Key features include: Data structure for

Facebook Research 6.8k Jan 01, 2023
TDN: Temporal Difference Networks for Efficient Action Recognition

TDN: Temporal Difference Networks for Efficient Action Recognition Overview We release the PyTorch code of the TDN(Temporal Difference Networks).

Multimedia Computing Group, Nanjing University 326 Dec 13, 2022
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models

Hyperparameter Optimization of Machine Learning Algorithms This code provides a hyper-parameter optimization implementation for machine learning algor

Li Yang 1.1k Dec 19, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. Check the unlearning effect

Yige-Li 51 Dec 07, 2022
Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Aviv Gabbay 41 Nov 29, 2022
LaBERT - A length-controllable and non-autoregressive image captioning model.

Length-Controllable Image Captioning (ECCV2020) This repo provides the implemetation of the paper Length-Controllable Image Captioning. Install conda

bearcatt 53 Nov 13, 2022
Swapping face using Face Mesh with TensorFlow Lite

Swapping face using Face Mesh with TensorFlow Lite

iwatake 17 Apr 26, 2022
Azion the best solution of Edge Computing in the world.

Azion Edge Function docker action Create or update an Edge Functions on Azion Edge Nodes. The domain name is the key for decision to a create or updat

8 Jul 16, 2022
Multimodal commodity image retrieval 多模态商品图像检索

Multimodal commodity image retrieval 多模态商品图像检索 Not finished yet... introduce explain:The specific description of the project and the product image dat

hongjie 8 Nov 25, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
Square Root Bundle Adjustment for Large-Scale Reconstruction

RootBA: Square Root Bundle Adjustment Project Page | Paper | Poster | Video | Code Table of Contents Citation Dependencies Installing dependencies on

Nikolaus Demmel 205 Dec 20, 2022