Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Overview

SweepContractor.jl

A Julia package for the contraction of tensor networks using the sweep-line-based contraction algorithm laid out in the paper General tensor network decoding of 2D Pauli codes. This algorithm is primarily designed for two-dimensional tensor networks but contains graph manipulation tools that allow it to function for generic tensor networks.

Sweep-line anim

Below I have provided some examples of SweepContractor.jl at work. Scripts with working versions of each of these examples are also included in the package. For more detailed documentation consult help pages by using ? in the Julia REPL.

Feel free to contact me with any comments, questions, or suggestions at [email protected]. If you use SweepContractor.jl for research, please cite either arXiv:2101.04125 and/or doi:10.5281/zenodo.5566841.

Example 1: ABCD

Consider the following four tensor networks, taken from the tensor network review Hand-waving and Interpretive Dance:

ABCD1,

where each tensor is defined

ABCD2

First we need to install SweepContract.jl, which we do by running

import Pkg
Pkg.add("SweepContractor")

Now that it's installed we can use the package by running

using SweepContractor

Next we need to define our network. We do this by initialising a LabelledTensorNetwork, which allows us to have a tensor network with elements labelled by an arbitrary type, in our case Char.

LTN = LabelledTensorNetwork{Char}()

Next, we populate this with our four tensors, which are each specified by giving a list of neighbouring tensors, an array consisting of the entries, and a two-dimensional location.

LTN['A'] = Tensor(['D','B'], [i^2-2j for i=0:2, j=0:2], 0, 1)
LTN['B'] = Tensor(['A','D','C'], [-3^i*j+k for i=0:2, j=0:2, k=0:2], 0, 0)
LTN['C'] = Tensor(['B','D'], [j for i=0:2, j=0:2], 1, 0)
LTN['D'] = Tensor(['A','B','C'], [i*j*k for i=0:2, j=0:2, k=0:2], 1, 1)

Finally, we want to contract this network. To do this we need to specify a target bond dimension and a maximum bond-dimension. In our case, we will use 2 and 4.

value = sweep_contract(LTN,2,4)

To avoid underflows or overflows in the case of large networks sweep_contract does not simply return a float, but returns (f::Float64,i::Int64), which represents a valuef*2^i. In this case, it returns (1.0546875, 10). By running ldexp(sweep...) we can see that this corresponds to the exact value of the network of 1080.

Note there are two speedups that can be made to this code. Firstly, sweep_contract copies the input tensor network, so we can use the form sweep_contract! which allows the function to modify the input tensor network, skipping this copy step. Secondly, sweep_contract is designed to function on arbitrary tensor networks, and starts by flattening the network down into two dimensions. If our network is already well-structured, we can run the contraction in fast mode skipping these steps.

value = sweep_contract!(LTN,2,4; fast=true)

Examples 2: 2d grid (open)

Next, we move on to the sort of network this code was primarily designed for, a two-dimensional network. Here consider an square grid network of linear size L, with each index of dimension d. For convenience, we can once again use a LabelledTensorNetwork, with labels in this case corresponding to coordinates in the grid. To construct such a network with Gaussian random entries we can use code such as:

LTN = LabelledTensorNetwork{Tuple{Int,Int}}();
for i1:L, j1:L
    adj=Tuple{Int,Int}[];
    i>1 && push!(adj,(i-1,j))
    j>1 && push!(adj,(i,j-1))
    i<L && push!(adj,(i+1,j))
    j<L && push!(adj,(i,j+1))
    LTN[i,j] = Tensor(adj, randn(d*ones(Int,length(adj))...), i, j)
end

We note that the if statements used have the function of imposing open boundary conditions. Once again we can now contract this by running the sweep contractor (in fast mode), for some choice of bond-dimensions χ and τ:

value = sweep_contract!(LTN,χ,τ; fast=true)

Example 3: 2d grid (periodic)

But what about contracting a 2d grid with periodic boundary conditions? Well, this contains a small number of long-range bonds. Thankfully, however SweepContractor.jl can run on such graphs by first planarising them.

We might start by taking the above code and directly changing the boundary conditions, but this will result in the boundary edges overlapping other edges in the network (e.g. the edge from (1,1) to (2,1) will overlap the edge from (1,1) to (L,1)), which the contractor cannot deal with. As a crude workaround we just randomly shift the position of each tensor by a small amount:

LTN = LabelledTensorNetwork{Tuple{Int,Int}}();
for i1:L, j1:L
    adj=[
        (mod1(i-1,L),mod1(j,L)),
        (mod1(i+1,L),mod1(j,L)),
        (mod1(i,L),mod1(j-1,L)),
        (mod1(i,L),mod1(j+1,L))
    ]
    LTN[i,j] = Tensor(adj, randn(d,d,d,d), i+0.1*rand(), j+0.1*rand())
end

Here the mod1 function is imposing our periodic boundary condition, and rand() is being used to slightly move each tensor. Once again we can now run sweep_contract on this, but cannot use fast-mode as the network is no longer planar:

value = sweep_contract!(LTN,χ,τ)

Example 4: 3d lattice

If we can impose periodic boundary conditions, can we go further away from 2D? How about 3D? We sure can! For this we can just add another dimension to the above construction for a 2d grid:

LTN = LabelledTensorNetwork{Tuple{Int,Int,Int}}();
for i1:L, j1:L, k1:L
    adj=Tuple{Int,Int,Int}[];
    i>1 && push!(adj,(i-1,j,k))
    i<L && push!(adj,(i+1,j,k))
    j>1 && push!(adj,(i,j-1,k))
    j<L && push!(adj,(i,j+1,k))
    k>1 && push!(adj,(i,j,k-1))
    k<L && push!(adj,(i,j,k+1))
    LTN[i,j,k] = Tensor(
        adj,
        randn(d*ones(Int,length(adj))...),
        i+0.01*randn(),
        j+0.01*randn()
    )
end

value = sweep_contract!(LTN,χ,τ)

Example 5: Complete network

So how far can we go away from two-dimensional? The further we stray away from two-dimensional the more inefficient the contraction will be, but for small examples arbitrary connectivity is permissible. The extreme example is a completely connected network of n tensors:

TN=TensorNetwork(undef,n);
for i=1:n
    TN[i]=Tensor(
        setdiff(1:n,i),
        randn(d*ones(Int,n-1)...),
        randn(),
        randn()
    )
end

value = sweep_contract!(LTN,χ,τ)

Here we have used a TensorNetwork instead of a LabelledTensorNetwork. In a LabelledTensorNetwork each tensor can be labelled by an arbitrary type, which is accomplished by storing the network as a dictionary, which can incur significant overheads. TensorNetwork is built using vectors, which each label now needs to be labelled by an integer 1 to n, but can be significantly faster. While less flexible, TensorNetwork should be preferred in performance-sensitive settings.

You might also like...
 Pretty Tensor - Fluent Neural Networks in TensorFlow
Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

Comments
  • Restructure code base and depend on DataStructures rather than copying code.

    Restructure code base and depend on DataStructures rather than copying code.

    • Organize some files in subdirectories
    • SweepContractor.jl uses a data structure copied and modified from DataStructures.jl. This PR minimizes the number of files copied and instead depends as much as possible on DataStructures.jl
    • Creates a test suite with a few tests taken from the examples.
    opened by jlapeyre 0
Releases(v0.1.7)
Owner
Christopher T. Chubb
Christopher T. Chubb
Official Repository of NeurIPS2021 paper: PTR

PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning Figure 1. Dataset Overview. Introduction A critical aspect of human vis

Yining Hong 32 Jun 02, 2022
mmfewshot is an open source few shot learning toolbox based on PyTorch

OpenMMLab FewShot Learning Toolbox and Benchmark

OpenMMLab 514 Dec 28, 2022
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement

Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement In this project, we proposed a Domain Disentanglement Faster-RCNN (DDF)

19 Nov 24, 2022
official code for dynamic convolution decomposition

Revisiting Dynamic Convolution via Matrix Decomposition (ICLR 2021) A pytorch implementation of DCD. If you use this code in your research please cons

Yunsheng Li 110 Nov 23, 2022
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model SWAGAN: A Style-based Wavelet-driven Generative Model Rinon Gal, Dana

55 Dec 06, 2022
Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows

Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows This is the official implementation of the ICCV 2021 Paper "Probabilistic Mono

62 Nov 23, 2022
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms

LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont

Chenglin Yang 20 Dec 31, 2021
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022
Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023
Supervised Classification from Text (P)

MSc-Thesis Module: Masters Research Thesis Language: Python Grade: 75 Title: An investigation of supervised classification of therapeutic process from

Matthew Laws 1 Nov 22, 2021
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023
Retrieve and analysis data from SDSS (Sloan Digital Sky Survey)

Author: Behrouz Safari License: MIT sdss A python package for retrieving and analysing data from SDSS (Sloan Digital Sky Survey) Installation Install

Behrouz 3 Oct 28, 2022
Code for the Paper: Alexandra Lindt and Emiel Hoogeboom.

Discrete Denoising Flows This repository contains the code for the experiments presented in the paper Discrete Denoising Flows [1]. To give a short ov

Alexandra Lindt 3 Oct 09, 2022
S2s2net - Sentinel-2 Super-Resolution Segmentation Network

S2S2Net Sentinel-2 Super-Resolution Segmentation Network Getting started Install

Wei Ji 10 Nov 10, 2022
Official repository for MixFaceNets: Extremely Efficient Face Recognition Networks

MixFaceNets This is the official repository of the paper: MixFaceNets: Extremely Efficient Face Recognition Networks. (Accepted in IJCB2021) https://i

Fadi Boutros 51 Dec 13, 2022
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022